Skip to main content

The Role of Reactive Oxygen and Nitrogen Species in Bioenergetics, Metabolism, and Signaling During Seed Germination

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 23))

Abstract

Mobilization of metabolism during seed germination is accompanied by intensive production of reactive oxygen (superoxide, hydrogen peroxide, etc.) and nitrogen (NO and its derivatives) species (ROS and RNS). Intensive ROS accumulation during imbibition is a key factor of breaking dormancy. Upon depletion of oxygen under the seed coat NO is formed anaerobically in the reductive pathway and participates in energy metabolism of the hypoxic seed. Its turnover involves nitrate and nitrite reduction followed by NO oxygenation in the reaction involving the hypoxically induced hemoglobin. Both ROS and RNS participate in regulation of major physiological processes such as breaking dormancy and mobilization of storage compounds. After radicle protrusion, glyoxysome-type peroxisome, which primary function is utilization of seed storage compounds, becomes an important organelle participating in ROS and RNS formation. The role of ROS and RNS in posttranslational modification of proteins, in mediation of hormonal responses, and in other signaling events is discussed in relation to regulation and integration of cellular processes in germinating seeds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

Abscisic acid

GA:

Gibberellic acid

GC:

Guanylate cyclase

Hb:

Hemoglobin

NO:

Nitric oxide

PCD:

Programmed cell death

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

References

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    CAS  PubMed  Google Scholar 

  • An LZ, Liu YH, Zhang MX, Chen T, Wang XL (2005) Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    CAS  PubMed  Google Scholar 

  • Andersson CR, Jensen EO, Llewellyn DJ, Dennis ES, Peacock WJ (1996) A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc Natl Acad Sci USA 93:5682–5687

    CAS  Google Scholar 

  • Arc E, Galland M, Godin B, Cueff G, Rajjou L (2013) Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4:346

    PubMed Central  PubMed  Google Scholar 

  • Attucci S, Carde JP, Raymond P, Saint-Ges V, Spiteri A, Pradet A (1991) Oxidative phosphorylation by mitochondria extracted from dry sunflower seeds. Plant Physiol 95:390–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environ 34:980–993

    CAS  PubMed  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    CAS  PubMed  Google Scholar 

  • Barba-Espin G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernandez JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919

    CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    CAS  PubMed  Google Scholar 

  • Batak I, Dević M, Giba Z, Grubišić D, Poff KL, Konjević R (2002) The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res 12:253–259

    CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    CAS  PubMed  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benamar A, Tallon C, Macherel D (2003) Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci Res 13:35–45

    CAS  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004a) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    CAS  PubMed  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004b) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Reinöhl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination. Springer, New York

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Bogusz D, Appleby CA, Landsmann J, Dennis ES, Trinick MJ, Peacock WJ (1988) Functioning hemoglobin genes in non-nodulating plants. Nature 331:178–180

    CAS  PubMed  Google Scholar 

  • Bouteau HEM, Job C, Job D, Corbineau F, Bailly C (2007) ROS signaling in seed dormancy alleviation. Plant Signal Behav 2:362–364

    PubMed Central  Google Scholar 

  • Burger WC (1998) The question of cotyledon homology in angiosperms. Bot Rev 64:356–371

    Google Scholar 

  • Bykova NV, Rampitsch C (2013) Modulating protein function through reversible oxidation: redox-mediated processes in plants revealed through proteomics. Proteomics 13:579–596

    CAS  PubMed  Google Scholar 

  • Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R (2011a) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11:865–882

    CAS  PubMed  Google Scholar 

  • Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R (2011b) Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. Phytochemistry 72:1162–1172

    CAS  PubMed  Google Scholar 

  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    CAS  Google Scholar 

  • Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171

    CAS  PubMed  Google Scholar 

  • Carrillo-Barral N, Matilla AJ, Iglesias-Fernandez R, Rodriguez-Gacio MD (2013) Nitrate-induced early transcriptional changes during imbibition in non-after-ripened Sisymbrium officinale seeds. Physiol Plant 148:560–573

    CAS  PubMed  Google Scholar 

  • Ching TM, Ching KK (1972) Content of adenosine phosphates and adenylate energy charge in germinating ponderosa pine seeds. Plant Physiol 50:536–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62:241–255

    CAS  Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    CAS  PubMed  Google Scholar 

  • Davies MJ, Fu S, Wang H, Dean RT (1999) Stable markers of oxidant damage to proteins and their application in study of human disease. Free Radic Biol Med 27:1151–1161

    CAS  PubMed  Google Scholar 

  • De Gara L, de Pinto MC, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100:894–900

    Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Debska K, Krasuska U, Budnicka K, Bogatek R, Gniazdowska A (2013) Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. J Plant Physiol 170:480–488

    CAS  PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    CAS  PubMed  Google Scholar 

  • Drozdowicz YM, Jones RL (1995) Hormonal regulation of organic and phosphoric acid release by barley aleurone layers and scutella. Plant Physiol 108:769–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duff SMG, Guy PA, Nie X, Durnin DC, Hill RD (1998) Hemoglobin expression in germinating barley. Seed Sci Res 8:431–436

    CAS  Google Scholar 

  • Eprintsev AT, Fedorin DN, Starinina EV, Igamberdiev AU (2014) Expression and properties of the mitochondrial and cytosolic forms of fumarase in germinating maize seeds. Physiol Plant 152:231–240

    CAS  PubMed  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    PubMed  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    CAS  PubMed  Google Scholar 

  • Giba Z, Grubišić D, Todorović S, Sajc L, Stojaković Đ, Konjević R (1998) Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of Empress tree seeds. Plant Growth Regul 26:175–181

    CAS  Google Scholar 

  • Giba Z, Grubišić D, Konjević R (2003) Nitrogen oxides as environmental sensors for seeds. Seed Sci Res 13:187–196

    Google Scholar 

  • Gniazdowska A, Dobrzynska U, Babanczyk T, Bogatek R (2007) Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta 225:1051–1057

    CAS  PubMed  Google Scholar 

  • Grover AK (2013) Why fruits are rich in antioxidants? An opinion review. Can J Physiol Pharmacol 91:191–197

    CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11:537–543

    CAS  PubMed  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    CAS  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LA, Igamberdiev AU (2011) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585:3843–3849

    CAS  PubMed  Google Scholar 

  • Guy PA, Sidaner J-P, Schroeder S, Edney M, MacGregor AW, Hill RD (2002) Embryo phytoglobin gene expression as a measure of germination in cereals. J Cereal Sci 36:147–156

    CAS  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    CAS  PubMed  Google Scholar 

  • Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68:1488–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • He X, Kermode AR (2010) Programmed cell death of the megagametophyte during post-germinative growth of white spruce (Picea glauca) seeds is regulated by reactive oxygen species and the ubiquitin-mediated proteolytic system. Plant Cell Physiol 51:1707–1720

    CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Østergaard-Jensen E, Hill RD (2008) Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta. Methods Enzymol 437:595–604

    CAS  PubMed  Google Scholar 

  • Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Expression and evolution of functionally distinct hemoglobin genes in plants. Plant Mol Biol 47:677–692

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and hemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60:651–674

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Rodionova MI (1991) Role of the glyoxylate cycle in metabolism of acetate and other organic acids. Sov Plant Physiol 38:360–365

    Google Scholar 

  • Igamberdiev AU, Popov VN, Falaleeva MI (1995) Alternative system of succinate oxidation in glyoxysomes of higher plants. FEBS Lett 367:287–290

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Baron K, Manac’h-Little N, Stoimenova M, Hill RD (2005) The hemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2006a) Scavenging of nitric oxide by barley hemoglobin is facilitated by monodehydroascrbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223:1033–1040

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Stoimenova M, Seregélyes C, Hill RD (2006b) Class-1 hemoglobin and antioxidant metabolism in alfalfa roots. Planta 223:1041–1046

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138:393–404

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2011) Structural and functional properties of class 1 ant hemoglobins. IUBMB Life 63:146–152

    CAS  PubMed  Google Scholar 

  • Jacobsen JV, Barrero JM, Hughes T, Julkowska M, Taylor JM, Xu Q, Gubler F (2013) Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta 238:121–138

    CAS  PubMed  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    CAS  PubMed  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    CAS  PubMed  Google Scholar 

  • Leymarie J, Vitkauskaite G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, Corbineau F, El-Maarouf-Bouteau H, Bailly C (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53:96–106

    CAS  PubMed  Google Scholar 

  • Lin YC, Yang L, Paul M, Zu YG, Tang ZH (2013) Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol Biochem 73:211–218

    CAS  PubMed  Google Scholar 

  • Lira-Ruan V, Sarath G, Klucas RV, Arredondo-Peter R (2001) Synthesis of hemoglobins in rice (Oryza sativa var. Jackson) plants growing in normal and stress conditions. Plant Sci 161:279–287

    CAS  PubMed  Google Scholar 

  • Liu YG, Ye NH, Liu R, Chen MX, Zhang JH (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiol 125:662–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lounifi I, Arc E, Molassiotis A, Job D, Rajjou L, Tanou G (2013) Interplay between protein carbonylation and nitrosylation in plants. Proteomics 13:568–578

    CAS  PubMed  Google Scholar 

  • Mayer AM, Shain Y (1974) Control of seed germination. Annu Rev Plant Physiol 25:167–193

    CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller K, Carstens AC, Linkies A, Torres MA et al (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897

    PubMed  Google Scholar 

  • Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G (2010) Proteomics reveal tissue-specific features of the cress (Lepidium sativum L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 10:406–416

    PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Nie XZ, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol 114:835–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    CAS  PubMed  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez FJ, Lira W (2005) Possible role of catalase in post-dormancy bud break in grapevines. J Plant Physiol 162:301–308

    CAS  PubMed  Google Scholar 

  • Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    CAS  PubMed  Google Scholar 

  • Pracharoenwattana I, Zhou WX, Keech O, Francisco PB, Udomchalothorn T, Tschoep H, Stitt M, Gibon Y, Smith SM (2010) Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J 62:785–795

    CAS  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    CAS  PubMed  Google Scholar 

  • Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55:1351–1359

    CAS  PubMed  Google Scholar 

  • Ross EJH, Shearman L, Mathiesen M, Zhou YJ, Arredondo-Peter R, Sarath G, Klucas RV (2001) Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types. Protoplasma 218:125–133

    CAS  PubMed  Google Scholar 

  • Rümer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    PubMed Central  PubMed  Google Scholar 

  • Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M (2013) Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. Plant J 76:875–887

    CAS  PubMed  Google Scholar 

  • Sarath G, Hou GC, Baird LM, Mitchell RB (2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C-4-grasses. Planta 226:697–708

    CAS  PubMed  Google Scholar 

  • Seregélyes C, Mustárdy L, Ayaydin F, Sass L, Kovács L, Endre G, Lukács N, Kovács I, Vass I, Kiss GB, Horváth GV, Dudits D (2000) Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells. FEBS Lett 482:125–130

    PubMed  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    CAS  Google Scholar 

  • Sowa AW, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci USA 95:10317–10321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  Google Scholar 

  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474

    CAS  PubMed  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal hemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    CAS  PubMed  Google Scholar 

  • Taylorson RB, Hendricks SB (1977) Dormancy in seeds. Annu Rev Plant Physiol 28:331–354

    CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    CAS  PubMed  Google Scholar 

  • Wang SM, Lue WL, Eimert K, Chen J (1996) Phytohormone-regulated beta-amylase gene expression in rice. Plant Mol Biol 31:975–982

    CAS  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    CAS  PubMed  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    CAS  PubMed  Google Scholar 

  • Wilson SB, Bonner WD Jr (1971) Studies of electron transport in dry and imbibed peanut embryos. Plant Physiol 48:340–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wojtyla Ł, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S (2006) A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J Plant Physiol 163:1207–1220

    CAS  PubMed  Google Scholar 

  • Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12:53–91

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    CAS  PubMed  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Shen WB, Zhang W, Xu LL (2005) A rapid response of β-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination. Planta 220:708–716

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia V. Bykova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bykova, N.V., Hu, J., Ma, Z., Igamberdiev, A.U. (2015). The Role of Reactive Oxygen and Nitrogen Species in Bioenergetics, Metabolism, and Signaling During Seed Germination. In: Gupta, K., Igamberdiev, A. (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Signaling and Communication in Plants, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-10079-1_9

Download citation

Publish with us

Policies and ethics