Skip to main content

Antioxidative Systems and Stress Tolerance: Insight from Wild and Cultivated Tomato Species

  • Chapter
  • First Online:
Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 23))

Abstract

The role of antioxidative systems of the salt-sensitive cultivated tomato, L. esculentum (Lem) and its wild salt-tolerant relative L. pennellii (Lpa) in salt tolerance was studied. For this, leaf and root cell organelles (chloroplasts/plastids, mitochondria, and peroxisomes) isolated from control and salt-treated Lem and Lpa plants were characterized and compared. In general, the inherent organellar antioxidative systems of the two tomato species were highly similar. The activities of SOD and the ascorbate–glutathione cycle isozymes, in the various cell organelles, were separated into soluble and membrane-bound fractions. Latency and solubilization assays were used to map the in situ suborganellar localization of the ascorbate–glutathione cycle isozymes. These activities were localized to both faces of the organellar membranes and in the lumens of various suborganellar compartments and were modeled for peroxisomes, chloroplasts, and mitochondria. Differences between the inherent antioxidative systems of Lem and Lpa were found. These included different ratios of the soluble to membrane-bound activities and different SOD-type inventories. In Lem organelles, stress-induced downregulation of antioxidative isozymes, and oxidants, was correlated with increased oxidative damage, in contrast, in Lpa organelles a stress-induced upregulation of the antioxidative isozymes, and oxidants, was correlated with alleviation of oxidative stress. Similarly, cross-tolerance to imposed oxidative stress by SHAM and 3-AT was found only in Lpa plants grown in salinity and was dependent, at least in part, upon the capacity for de novo GSH synthesis. The failure of Lem to upregulate its antioxidative systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah GM, Serag MM, Quick WP (2010) Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiol Plant 138:60–73

    CAS  PubMed  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Asada K (1996) Radical production and scavenging in chloroplasts. In: Baker NR (ed) Photosynthesis and environment. Kluwer, Dordrecht, pp 123–150

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181

    CAS  PubMed  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and the environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435

    CAS  PubMed  Google Scholar 

  • Briskin DP, Poole RJ (1983) Plasma membrane ATPase of red beet forms a phosphorylated intermediate. Plant Physiol 71:507–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bueno P, Varela J, Gimenezgallego G et al (1995) Peroxisomal copper, zinc superoxide-dismutase—characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108:1151–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casano LM, Zapata JM, Martin M, Sabater B (2000) Chlororespiration and poising of cyclic electron transport—Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275:942–948

    CAS  PubMed  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34

    CAS  Google Scholar 

  • Chen SB, Heuer B (2013) Effect of genotype and exogenous application of glycinebetaine on antioxidant enzyme activity in native gels of 7-day-old salt-stressed tomato (Solanum lycopersicum) seedlings. Sci Hortic 162:106–116

    CAS  Google Scholar 

  • Chew O, Whelan J, Millar H (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Sandalio LM, Palma JM, Leidi EO, Hernandez JA, Sevilla F, del Rio LA (1991) Subcellular-distribution of superoxide dismutase in leaves of ureide-producing leguminous plants. Physiol Plant 82:285–291

    CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del RĂ­o LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    CAS  PubMed  Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    CAS  Google Scholar 

  • Dasgan HY, Aktas H, Abak K, Cakmak I (2002) Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci 163:695–703

    CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol Life Sci 57:779–795

    CAS  Google Scholar 

  • De Leonardis S, Dipierro N, Dipierro S (2000) Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiol Biochem 38:773–779

    Google Scholar 

  • del RĂ­o LA, Sandalio LM, Corpas FJ, Lopez-Huertas E, Palma JM, Pastori GM (1998a) Activated oxygen-mediated metabolic functions of leaf peroxisomes. Physiol Plant 104:673–680

    Google Scholar 

  • del RĂ­o LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, JimĂ©nez A, LĂłpez-Huertas E, Hernández JA (1998b) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    PubMed Central  PubMed  Google Scholar 

  • del RĂ­o LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    PubMed  Google Scholar 

  • del RĂ­o LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    PubMed Central  PubMed  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 5:247–257

    Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SMN, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants—identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    CAS  PubMed  Google Scholar 

  • Droillard M, Paulin A (1990) Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular-distribution of multiple forms of glutathione-reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    CAS  PubMed  Google Scholar 

  • Fang TK, Donaldson RP, Vigil EL (1987) Electron transport in purified glyoxysomal membranes from castor bean endosperm. Planta 172:1–13

    CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol 148:391–398

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2010) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    CAS  Google Scholar 

  • Furbank RT, Badger MR (1983) Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids. Biochim Biophys Acta 723:400–409

    CAS  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    CAS  PubMed  Google Scholar 

  • GĂłmez JM, Hernández JA, JimĂ©nez A, del RĂ­o LA, Sevilla F (1999) Differential response of antioxidative system of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:11–18

    Google Scholar 

  • GĂłmez JM, JimĂ©nez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130

    PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Lueas MC (1994) The effects of NaCI on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep 13:498–503

    CAS  PubMed  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    CAS  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shockproteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernández JA, Corpas FJ, GĂłmez M, del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    Google Scholar 

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    CAS  PubMed  Google Scholar 

  • Hossain MA, Asada K (1985) Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. J Biol Chem 260:12920–12926

    CAS  PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hu JP, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012a) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu LX, Li HY, Pang HC, Fu JM (2012b) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146–156

    CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Dalton DA, Becana M (2001) The antioxidants of legume nodule mitochondria. Mol Plant Microbe Interact 14:1189–1196

    CAS  PubMed  Google Scholar 

  • JimĂ©nez A, Hernández JA, del RĂ­o LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed Central  PubMed  Google Scholar 

  • Juszczak I, Rudnik R, Pietzenuk B, Baier M (2012) Natural genetic variation in the expression regulation of the chloroplast antioxidant system among Arabidopsis thaliana accessions. Physiol Plant 146:53–70

    CAS  PubMed  Google Scholar 

  • Kahn TL, Fender SE, Bray EA, O’Connell MA (1993) Characterization of expression of drought- and abscisic acid-regulated tomato genes in the drought-resistant species Lycopersicon pennellii. Plant Physiol 103:597–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanematsu S, Asada K (1994) Superoxide dismutase. In: Fukui T, Soda K (eds) Molecular aspects of enzyme catalysis. Kondansha Ltd, Tokyo, pp 191–210

    Google Scholar 

  • Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285

    PubMed  Google Scholar 

  • Karyotou K, Donaldson RP (2005) Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes. Arch Biochem Biophys 434:248–257

    CAS  PubMed  Google Scholar 

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. Arabidopsis Book 7:e0123. doi:10.1199/tab.0123

    PubMed Central  PubMed  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    CAS  Google Scholar 

  • Kieselbach T, Hagman A, Andersson B, Schroder W (1998) The thylakoid lumen of chloroplasts—isolation and characterization. J Biol Chem 273:6710–6716

    CAS  PubMed  Google Scholar 

  • Lázaro JJ, JimĂ©nez A, Camejo D, Iglesias-Baena I, MartĂ­ Mdel C, Lázaro-Payo A, Barranco-Medina S, Sevilla F (2013) Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front Plant Sci 4:460

    PubMed Central  PubMed  Google Scholar 

  • Levine A (1999) Oxidative stress as a regulator of environmental responses in plants. In: Lerner HR (ed) Plant responses to environmental stresses from phytohormones to genome reorganization. Marcel Dekker, New York, pp 247–264

    Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    CAS  PubMed  Google Scholar 

  • Lopez-Huertas E, Sandalio LM, GĂłmez M, del Rio LA (1997) Superoxide radical generation in peroxisomal membranes: evidence for the participation of the 18-kDa integral membrane polypeptide. Free Radic Res 26:497–506

    CAS  PubMed  Google Scholar 

  • Lopez-Huertas E, Corpas FJ, Sandalio LM, del Rio LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698

    CAS  PubMed  Google Scholar 

  • Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    CAS  PubMed  Google Scholar 

  • Menda N, Strickler SR, Mueller LA (2013) Advances in tomato research in the post-genome era. Plant Biotechnol 30:243–256

    CAS  Google Scholar 

  • Mhamdi A, Guillaume Q, Sejir C, Vanderauwera S, Breusegem FV, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 6:4197–4220

    Google Scholar 

  • Millar AH, Whelan J, Soole KL (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    CAS  PubMed  Google Scholar 

  • Miller G, Nobuhiro Suzukis N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiol Plant 110:42–51

    CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002a) Salt stress induces upregulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2002b) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radic Res 36:195–202

    CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003a) Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    CAS  PubMed  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003b) Co-ordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004a) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    CAS  PubMed  Google Scholar 

  • Mittova V, Theodoulou F, Kiddle G, Volokita M, Tal M, Foyer CH, Guy M (2004b) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ 27:237–250

    CAS  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach-chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35:539–549

    CAS  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S, Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39:821–829

    CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  Google Scholar 

  • Moore AL, Siedow JN (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta 1059:121–140

    CAS  PubMed  Google Scholar 

  • Morgane M, Duchene AM (2012) Macromolecules trafficking to plant mitochondria. Adv Bot Res 63:347–421 (Mitochondrial genome evolution book series)

    Google Scholar 

  • Moyle CL (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanumsect. lycopersicon). Evolution 62:2995–3013

    PubMed  Google Scholar 

  • Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R (2008) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20:3148–3162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genomics 279:171–182

    CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri CLM (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiol Plant 104:630–638

    CAS  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    CAS  PubMed  Google Scholar 

  • Neto AD, Prisco JT, Eneas J et al (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Google Scholar 

  • Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Noctor G, GĂłmez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    CAS  PubMed  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    CAS  PubMed  Google Scholar 

  • Ogawa K, Kanematsu S, Takabe K, Asada K (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36:565–573

    CAS  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    CAS  PubMed  Google Scholar 

  • Peralta IE, Sandra K, Spooner DM (2005) New species of wild tomatoes (Solanum Section Lycopersicon: Solanaceae) from Northern Peru. Syst Bot 30:424–434

    Google Scholar 

  • Pilon M, Ravet K, Tapken W (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta 1807:989–998

    CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Stewart CR (1995) Localization and characterization of peroxidases in the mitochondria of chilling-acclimated maize seedlings. Plant Physiol 108:1597–1605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plantmitochondria. Annu Rev Plant Biol 55:23–39

    CAS  PubMed  Google Scholar 

  • Reumann S, Bettermann M, Bent R, Heldt HW (1997) Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean. Plant Physiol 115:891–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • RodrĂ­guez-Serrano M, Romero-Puertas M, Pastori G, Corpas FJ, Sandalio LM, del RĂ­o LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. J Exp Bot 58:2417–2427

    PubMed  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Physiol Plant 103:437–441

    CAS  Google Scholar 

  • Sakihama Y, Mano J, Sano S, Asada K, Yamasaki H (2000) Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem Biophys Res Commun 279:949–954

    CAS  PubMed  Google Scholar 

  • Sandalio LM, del RĂ­o LA (1988) Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxisomes and leaf peroxisomes). Plant Physiol 88:1215–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandalio LM, LĂłpez-Huertas E, Bueno P, del RĂ­o LA (1997) Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.). Free Radic Res 26:187–194

    CAS  PubMed  Google Scholar 

  • Schumann U, Prestele J, O’Geen H, Brueggeman R, Wanner G, Gietl C (2007) Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci USA 104:1069–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sehmer L, Dizengremel P (1998) Contribution to subcellular localization of superoxide dismutase isoforms of spruce needles and oak leaves. J Plant Physiol 153:545–551

    CAS  Google Scholar 

  • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    CAS  PubMed  Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxdants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelii. Physiol Plant 104:169–174

    CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    CAS  PubMed  Google Scholar 

  • Sheoran S, Pandey B, Singh R, Sharma P, Chatrath R (2011) Modeling and phylogeny analysis of bread wheat MnSOD. Bioinformation 6:209–211

    PubMed Central  PubMed  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Yuan YH (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    CAS  PubMed  Google Scholar 

  • Siendones E, Gonzáz-Reyes JA, Santos-Ocaña C, Navas P, CĂłrdoba F (1999) Biosynthesis of ascorbic acid in kidney bean. L-Galactono-Îł-lactone dehydrogenase is an intrinsic protein located at the inner mitochondrial membrane. Plant Physiol 120:907–912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    CAS  PubMed  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 10:3640–3656

    Google Scholar 

  • Streller S, Kromer S, Wingsle G (1994) Isolation and purification of mitochondrial mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol 35:859–867

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Ron Mittler R (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Sze H (1985) H+-Translocating atpases: advances using membrane vesicles. Annu Rev Plant Physiol 36:175–208

    CAS  Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. peruvianum and Solanum pennellii to high salinity. Z Pflanzenphysiol 86:231–240

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress–response concept valid? J Exp Bot 55:1955–1962

    CAS  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    PubMed Central  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volk S, Feieraben J (1989) Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves. Plant Cell Environ 12:701–712

    CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegen F (2002) Signal transduction during oxidative stress. J Exp Bot 53:227–1236

    Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    CAS  PubMed  Google Scholar 

  • Wang RG, Chen SL, Zhou XY et al (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957

    CAS  PubMed  Google Scholar 

  • WĂłjcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55:125–132

    Google Scholar 

  • Yu CW, Murphy TM, Sung WW, Lin CH (2002) H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol 29:1081–1087

    CAS  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhen Y, Miao L, Su J et al (2009) Differential responses of anti-oxidative enzymes to aluminum stress in tolerant and sensitive soybean genotypes. J Plant Nutr 32:1255–1270

    CAS  Google Scholar 

  • Zhu D, Scandalios JG (1993) Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family. Proc Natl Acad Sci USA 90:9310–9314

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Mittova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mittova, V., Volokita, M., Guy, M. (2015). Antioxidative Systems and Stress Tolerance: Insight from Wild and Cultivated Tomato Species. In: Gupta, K., Igamberdiev, A. (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Signaling and Communication in Plants, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-10079-1_6

Download citation

Publish with us

Policies and ethics