Skip to main content

From Lovelock to Horndeski’s Generalized Scalar Tensor Theory

  • Chapter
  • First Online:
Modifications of Einstein's Theory of Gravity at Large Distances

Part of the book series: Lecture Notes in Physics ((LNP,volume 892))

Abstract

We review and discuss some recent progress in Lovelock and Horndeski theories modifying Einstein’s General Relativity. Using as our guide the uniqueness properties of these modified gravity theories we then discuss how Kaluza-Klein reduction of Lovelock theory can lead to effective scalar-tensor actions including several important terms of Horndeski theory. We show how this can be put to practical use by mapping analytic black hole solutions of one theory to the other. We then elaborate on the subset of Horndeski theory that has self-tuning properties and review a generic method giving scalar-tensor black hole solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Local distance scales range up to 30 odd astronomical units, size of the solar system, but also size of typical binary pulsar systems. The astronomical unit is a rough earth to sun distance.

  2. 2.

    For a interesting proposal tackling the cosmological constant problem including the crucial radiative corrections see, [8].

  3. 3.

    The result depicted here is easily extended to manifolds with boundaries [12].

  4. 4.

    When a surface has a boundary an analogous result holds.

  5. 5.

    In the action one can always add terms that can be written as a total divergence. Therefore the term “unique action” refers to the unique class of equivalence which is in turn defined modulo total divergence terms. In other words two actions are equal if and only if they are in the same class of equivalence or they differ only by a totally divergent term.

  6. 6.

    The special relation between the coupling parameters corresponds to the strong coupling limit of EGB-literally the case where the Gauss-Bonnet term is of maximal relative strength to the Einstein-Hilbert term and gives a very special theory with enhanced symmetries, usually referred to as Chern–Simons theory (see the nice review [27]).

  7. 7.

    We will see that when the horizon sections carry non-zero curvature there is a global change in the topology of the solution related to the presence of a solid angle deficit. This will end up having important consequences that we will discuss in detail later with the solution at hand.

  8. 8.

    In higher order Lovelock theory there are more according to the order of the highest order Lovelock term [12].

  9. 9.

    Clearly, had we been seeking a self-tuning solution in the presence of an arbitrary cosmological constant this linear anzatz would not do. We know rather that there must be at large distance a t 2 dependence on the scalar field. This unfortunately renders the field equations t-dependent and the system cannot admit a non zero mass solution. In other words a self-tuning black hole would have to be part of a radiating space-time. Again this is an open problem.

References

  1. C.M. Will, The Confrontation Between General Relativity and Experiment, gr-qc/0510072; C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge) (1981)

    Google Scholar 

  2. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. C. Lanczos, Ann. Math. 39, 842 (1938)

    Article  MathSciNet  Google Scholar 

  4. B. Zumino, Phys. Rep. 137, 109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Ostrogradski, Mem. Ac. St. Petersbourg 4, 385 (1850)

    Google Scholar 

  6. M. Betoule et al. [SDSS Collaboration], [arXiv:1401.4064 [astro-ph.CO]]; G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 208, 19 (2013) [arXiv:1212.5226 [astro-ph.CO]]

    Google Scholar 

  7. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. N. Kaloper, A. Padilla, Phys. Rev. Lett. 112, 091304 (2014) [arXiv:1309.6562 [hep-th]]

    Google Scholar 

  9. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, Phys. Rev. Lett. 108, 051101 (2012) [arXiv:1106.2000 [hep-th]]; C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, Phys. Rev. D 85, 104040 (2012) [arXiv:1112.4866 [hep-th]]

    Google Scholar 

  10. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012) [arXiv:1106.2476 [astro-ph.CO]]

    Google Scholar 

  11. P. Horava, Phys. Rev. D 79, 084008 (2009) [arXiv:0901.3775 [hep-th]]; D. Blas, O. Pujolas, S. Sibiryakov, Phys. Rev. Lett. 104, 181302 (2010) [arXiv:0909.3525 [hep-th]]; B. Audren, D. Blas, J. Lesgourgues, S. Sibiryakov, JCAP 1308, 039 (2013) [arXiv:1305.0009 [astro-ph.CO], arXiv:1305.0009]

    Google Scholar 

  12. N. Deruelle, J. Madore, gr-qc/0305004; C. Charmousis, Lect. Notes Phys. 769, 299 (2009) [arXiv:0805.0568 [gr-qc]]; C. Garraffo, G. Giribet, Mod. Phys. Lett. A 23, 1801 (2008) [arXiv:0805.3575 [gr-qc]]

    Google Scholar 

  13. G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)

    Article  MathSciNet  Google Scholar 

  14. A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009) [arXiv:0811.2197 [hep-th]]

    Google Scholar 

  15. C. Deffayet, S. Deser, G. Esposito-Farese, Phys. Rev. D 80, 064015 (2009) [arXiv:0906.1967 [gr-qc]]

    Google Scholar 

  16. C. de Rham, arXiv:1401.4173 [hep-th]; M.S. Volkov, arXiv:1405.1742 [hep-th]

    Google Scholar 

  17. G.J. Olmo, in Open Questions in Cosmology, ed. by G.J. Olmo (InTech Publishing, Rijeka, Croatia, 2012). ISBN 978-953-51-0880-1 (Downloadable from http://www.intechopen.com/books/open-questions-in-cosmology) [arXiv:1212.6393]

  18. E. Babichev, C. Charmousis, arXiv:1312.3204 [gr-qc]

    Google Scholar 

  19. S.B. Edgar, A. Hoglund, J. Math. Phys. 43, 659 (2002) [gr-qc/0105066]

    Google Scholar 

  20. M. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish, Houston, 1999)

    MATH  Google Scholar 

  21. S.-S. Chern, Ann. Math. 45, 747–752 (1944); S.-S. Chern, Ann. Math. 46, 674–684 (1945)

    Google Scholar 

  22. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. T. Damour, G. Esposito-Farese, Class. Quantum Grav. 9, 2093 (1992); G. Esposito-Farese, AIP Conf. Proc. 736, 35 (2004) [gr-qc/0409081]; T.P. Sotiriou, arXiv:1404.2955 [gr-qc]

    Google Scholar 

  24. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) [arXiv:0805.1726 [gr-qc]]

    Google Scholar 

  25. N. Arkani-Hamed, H. Georgi, M.D. Schwartz, Ann. Phys. 305, 96 (2003) [hep-th/0210184]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. T. Kobayashi, M. Yamaguchi, J.’i. Yokoyama, Prog. Theor. Phys. 126, 511 (2011) [arXiv: 1105.5723 [hep-th]]

    Google Scholar 

  27. M. Banados, R. Troncoso, J. Zanelli, Phys. Rev. D 54, 2605 (1996) [gr-qc/9601003]

    Google Scholar 

  28. R. Zegers, J. Math. Phys. 46, 072502 (2005) [gr-qc/0505016]

    Google Scholar 

  29. D. Birmingham, Class. Quantum Grav. 16, 1197 (1999) [hep-th/9808032]; S. Aminneborg, I. Bengtsson, S. Holst, P. Peldán, Class. Quantum Grav. 13, 2707 (1996) gr-qc/9604005; J.P.S. Lemos, Phys. Lett. B 353, 46 (1995) [arXiv:gr-qc/9404041]; J.P.S. Lemos, Class. Quantum. Grav. 12, 1081 (1995) [arXiv:gr-qc/9407024]; D. Brill, J. Louko, P. Peldán, Phys. Rev. D 56, 3600 (1997) gr-qc/9705012

    Google Scholar 

  30. G.W. Gibbons, S.A. Hartnoll, C.N. Pope, Phys. Rev. D 67, 084024 (2003) [hep-th/0208031]

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Gibbons, S.A. Hartnoll, Phys. Rev. D 66, 064024 (2002) [hep-th/0206202]

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Gregory, R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993) [hep-th/9301052]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. G. Dotti, R.J. Gleiser, Phys. Lett. B 627, 174 (2005) [hep-th/0508118]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. C. Bogdanos, C. Charmousis, B. Gouteraux, R. Zegers, JHEP 0910, 037 (2009) [arXiv:0906.4953 [hep-th]]

    Google Scholar 

  35. P. Bowcock, C. Charmousis, R. Gregory, Class. Quantum Grav. 17, 4745 (2000) [hep-th/ 0007177]

    Google Scholar 

  36. C. Charmousis, J.-F. Dufaux, Class. Quantum Grav. 19, 4671 (2002) [hep-th/0202107]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. C. Charmousis, A. Padilla, JHEP 0812, 038 (2008) [arXiv:0807.2864 [hep-th]]

    Google Scholar 

  38. B. Zwiebach, Phys. Lett. B 156, 315 (1985); S. Deser, A.N. Redlich, Phys. Lett. B 176, 350 (1986) [Erratum-Phys. Lett. B 186B, 461 (1987)]

    Google Scholar 

  39. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985); R.-G. Cai, Phys. Rev. D 65, 084014 (2002) [hep-th/0109133]

    Google Scholar 

  40. R.J. Gleiser, G. Dotti, Phys. Rev. D 72, 124002 (2005) [gr-qc/0510069]

    Google Scholar 

  41. T. Takahashi, J. Soda, Prog. Theor. Phys. 124, 711 (2010) [arXiv:1008.1618 [gr-qc]]

    Google Scholar 

  42. H. Maeda, Phys. Rev. D 81, 124007 (2010) [arXiv:1004.0917 [gr-qc]]

    Google Scholar 

  43. D.J. Gross, J.H. Sloan, Nucl. Phys. B 291, 41 (1987); R.R. Metsaev, A.A. Tseytlin, Nucl. Phys. B 293, 385 (1987)

    Google Scholar 

  44. Y. Bardoux, C. Charmousis, T. Kolyvaris, Phys. Rev. D 83, 104020 (2011) [arXiv:1012.4390 [gr-qc]]; Y. Bardoux, M.M. Caldarelli, C. Charmousis, JHEP 1205, 054 (2012) [arXiv: 1202.4458 [hep-th]]

    Google Scholar 

  45. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998) [hep-ph/ 9803315]; L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [hep-th/9906064]; L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221]; R. Gregory, V.A. Rubakov, S.M. Sibiryakov, Phys. Rev. Lett. 84, 5928 (2000) [hep-th/0002072]; G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000) [hep-th/0005016]

    Google Scholar 

  46. S.M. Carroll, M.M. Guica, hep-th/0302067; P. Bostock, R. Gregory, I. Navarro, J. Santiago, Phys. Rev. Lett. 92, 221601 (2004) [hep-th/0311074]; C. Charmousis, A. Papazoglou, JHEP 0807, 062 (2008) [arXiv:0804.2121 [hep-th]]

    Google Scholar 

  47. C. Charmousis, R. Zegers, Phys. Rev. D 72, 064005 (2005) [hep-th/0502171]; C. Charmousis, R. Zegers, JHEP 0508, 075 (2005) [hep-th/0502170]

    Google Scholar 

  48. C. Charmousis, G. Kofinas, A. Papazoglou, JCAP 1001, 022 (2010) [arXiv:0907.1640 [hep-th]]

    Google Scholar 

  49. C. Charmousis, B. Gouteraux, J. Soda, Phys. Rev. D 80, 024028 (2009) [arXiv:0905.3337 [gr-qc]]

    Google Scholar 

  50. F. Mueller-Hoissen, Class. Quantum Grav. 3, 665 (1986); C. Wetterich, Nucl. Phys. B 252, 309 (1985); N. Deruelle, J. Madore, Mod. Phys. Lett. A 1, 237 (1986); F. Mueller-Hoissen, Nucl. Phys. B 337, 709 (1990); F. Mueller-Hoissen, Ann. Phys. 48, 543 (1991)

    Google Scholar 

  51. A. Jakobek, K.A. Meissner, M. Olechowski, Nucl. Phys. B 645, 217 (2002) [hep-th/0206254]; C. Charmousis, S.C. Davis, J.-F. Dufaux, JHEP 0312, 029 (2003) [hep-th/0309083]; L. Amendola, C. Charmousis, S.C. Davis, JCAP 0612, 020 (2006) [hep-th/0506137]

    Google Scholar 

  52. K. Van Acoleyen, J. Van Doorsselaere, Phys. Rev. D 83, 084025 (2011) [arXiv:1102.0487 [gr-qc]]

    Google Scholar 

  53. C. Charmousis, B. Gouteraux, E. Kiritsis, JHEP 1209, 011 (2012) [arXiv:1206.1499 [hep-th]]

    Google Scholar 

  54. I. Kanitscheider, K. Skenderis, JHEP 0904, 062 (2009) [arXiv:0901.1487 [hep-th]]

    Google Scholar 

  55. B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis, M. Taylor, JHEP 1201, 089 (2012) [arXiv: 1110.2320 [hep-th]]

    Google Scholar 

  56. C. Deffayet, G. Esposito-Farese, A. Vikman, Phys. Rev. D 79, 084003 (2009) [arXiv:0901.1314 [hep-th]]

    Google Scholar 

  57. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, Phys. Rev. D 84, 064039 (2011) [arXiv: 1103.3260 [hep-th]]

    Google Scholar 

  58. M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989)

    Article  ADS  Google Scholar 

  59. L. Hui, A. Nicolis, Phys. Rev. Lett. 110(24), 241104 (2013) [arXiv:1202.1296 [hep-th]]

    Google Scholar 

  60. N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, R. Sundrum, Phys. Lett. B 480, 193 (2000) [hep-th/0001197]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. N. Kaloper, A. Padilla, Phys. Rev. Lett. 112, 091304 (2014) [arXiv:1309.6562 [hep-th]]

    Google Scholar 

  62. E.J. Copeland, A. Padilla, P.M. Saffin, JCAP 1212, 026 (2012) [arXiv:1208.3373 [hep-th]]

    Google Scholar 

  63. T. Kobayashi, N. Tanahashi, arXiv:1403.4364 [gr-qc]; M. Bravo-Gaete, M. Hassaine, arXiv:1312.7736 [hep-th]; C. Charmousis, T. Kolyvaris, E. Papantonopoulos, M. Tsoukalas, arXiv:1404.1024 [gr-qc]

    Google Scholar 

  64. M. Rinaldi, Phys. Rev. D 86, 084048 (2012) [arXiv:1208.0103 [gr-qc]]; M. Minamitsuji, Phys. Rev. D 89, 064017 (2014) [arXiv:1312.3759 [gr-qc]]; A. Anabalon, A. Cisterna, J. Oliva, Phys. Rev. D 89, 084050 (2014) [arXiv:1312.3597 [gr-qc]]; A. Cisterna, C. Erices, Phys. Rev. D 89, 084038 (2014) [arXiv:1401.4479 [gr-qc]]

    Google Scholar 

  65. T.P. Sotiriou, S.-Y. Zhou, arXiv:1312.3622 [gr-qc]

    Google Scholar 

Download references

Acknowledgements

I am very happy to acknowledge numerous interesting discussions with my colleagues during the course of the Aegean summer school. I am also indebted to E Papantonopoulos for the very effective and smooth organisation of the school. I am very happy to thank Eugeny Babichev for numerous comments as well as Stanley Deser for remarks on the first version of this paper. I also thank the CERN theory group for hosting me during the final stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Charmousis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charmousis, C. (2015). From Lovelock to Horndeski’s Generalized Scalar Tensor Theory. In: Papantonopoulos, E. (eds) Modifications of Einstein's Theory of Gravity at Large Distances. Lecture Notes in Physics, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-10070-8_2

Download citation

Publish with us

Policies and ethics