Skip to main content

Gravitational Duality, Topologically Massive Gravity and Holographic Fluids

  • Chapter
  • First Online:
Modifications of Einstein's Theory of Gravity at Large Distances

Part of the book series: Lecture Notes in Physics ((LNP,volume 892))

Abstract

Self-duality in Euclidean gravitational set ups is a tool for finding remarkable four-dimensional geometries. From a holographic perspective, self-duality sets a relationship between two a priori independent boundary data: the boundary energy–momentum tensor and the boundary Cotton tensor. This relationship, which can be viewed as resulting from a topological mass term for gravity boundary dynamics, survives under the Lorentzian signature and provides a tool for generating exact bulk Einstein spaces carrying, among others, nut charge. In turn, the holographic analysis exhibits perfect-fluid-like equilibrium states and the presence of non-trivial vorticity allows to show that infinite number of transport coefficients vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quoting Ward (1985, [5]):

    …many (and perhaps all?) of the ordinary or partial differential equations that are regarded as being integrable or solvable may be obtained from the self-duality equations (or its generalizations) by reduction.

  2. 2.

    The relation is \(T_{\mu \nu } =\kappa F_{\mu \nu }\), given in Eq. (13.22).

  3. 3.

    See also [27] for a review.

  4. 4.

    Note the transformation of the connection: \(\omega _{ b}^{a{\prime}} =\varLambda _{ c}^{-1\,a}\omega _{ d}^{c}\varLambda _{ b}^{d} +\varLambda _{ c}^{-1\,a}\text{d}\varLambda _{ b}^{c}\).

  5. 5.

    A remark is in order here for D = 7 and 8. The octonionic structure constants \(\psi _{\alpha \beta \gamma }\ \alpha,\beta,\gamma \in \{ 1,\ldots, 7\}\) and the dual G 2-invariant antisymmetric symbol \(\psi ^{\alpha \beta \gamma \delta }\) allow to define a duality relation in 7 and 8 dimensions with respect to an SO(7) ⊃ G 2, and an \(\mathit{SO}(8) \supset \text{Spin}_{7}\) respectively. Note, however, that neither SO(7) nor SO(8) is factorized, as opposed to SO(4).

  6. 6.

    In four dimensions, the fixed locus of an isometry is either a zero-dimensional or a two-dimensional space. The first case corresponds to a nut, the second to a bolt, and both can be removable singularities under appropriate conditions (see [28] for a complete presentation).

  7. 7.

    The metrics at hand are sometimes called spherical Calderbank–Pedersen, because they possess in total four Killings, of which three form an SU(2) algebra.

  8. 8.

    This is the non-compact Fubini–Study. The ordinary Fubini–Study corresponds to the compact \(\mathbb{C}\mathbb{P}_{2} = \frac{\mathit{SU}(3)} {U(2)}\) and has positive cosmological constant.

  9. 9.

    In three dimensions, the Schouten tensor is defined as \(S^{\mu \nu } = R^{\mu \nu } -\frac{R} {4} g^{\mu \nu }\), whereas the Cotton–York tensor is the Hodge-dual of the Cotton tensor, defined in Eq. (13.30). The latter replaces the always vanishing three-dimensional Weyl tensor. In particular, conformally flat boundaries have zero Cotton tensor and vice versa.

  10. 10.

    When dealing with the Fefferman–Graham expansion together with Einstein dynamics, attention should be payed to the underlying variational principle. This sometimes requires Gibbons–Hawking boundary terms to be well posed. In the Hamiltonian language, these terms are generators of canonical transformations and in AdS/CFT their effect is known as holographic renormalization. These subtleties are discussed in [37, 38, 44–47], together with the specific role of the Chern–Simons boundary term, which produces the boundary Cotton tensor, and in conjunction with Dirichlet vs. Neumann boundary conditions. One should also quote the related works [48, 49], in the linearized version of gravitational duality though.

  11. 11.

    In four-dimensional metrics with Lorentzian signature, self-duality leads either to complex solutions, or to Minkowski and AdS4, which are both self-dual and anti-self-dual (they have vanishing Riemann and vanishing Weyl, respectively).

  12. 12.

    Defining the local proper frame, i.e. the velocity field u, is somewhat ambiguous in relativistic fluids. A possible choice is the Landau frame, where the non-transverse part of the energy–momentum tensor vanishes when the pressure is zero. This will be our choice.

  13. 13.

    We recommend [50, 51] for a recent account of that subject. Insightful information was also made available thanks to the developments on fluid/gravity correspondence [52, 53].

  14. 14.

    This should not be confused with a steady state, where we have stationarity due to a balance between external driving forces and internal dissipation. Such situations will not be discussed here.

  15. 15.

    It is admitted that a non-relativistic fluid is stationary when its velocity field is time-independent. This is of course an observer-dependent statement. For relativistic fluids, one could make this more intrinsic saying that the velocity field commutes with a globally defined time-like Killing vector, assuming that the later exists. Note also that statements about global thermodynamic equilibrium in gravitational fields are subtle and the subject still attracts interest [55].

  16. 16.

    More data are available on the dangerous tensors in certain classes of geometries in [23].

  17. 17.

    Remember that inside a stationary gravitational field, under certain conditions, global thermodynamic equilibrium requires \(T\sqrt{-g_{00}}\) be constant [58]. Here \(\sqrt{-g_{00}} = B\). Holographically, if the rescaling of the boundary metric by B(x) (as in (13.39)) is accompanied with an appropriate rescaling of the energy–momentum tensor, the bulk geometry is unaffected, and B(x) is generated by a bulk diffeomorphism.

  18. 18.

    Vorticity is inherited from the fact that ∂ t is not hypersurface-orthogonal. For this very same reason, Papapetrou–Randers geometries may in general suffer from global hyperbolicity breakdown. This occurs whenever regions exist, where constant-t surfaces cease being space-like, and potentially exhibit closed time-like curves. All these issues were discussed in detail in [20–22].

  19. 19.

    One important point to note is that in perfect equilibrium we have no frame ambiguity in defining the velocity field. Since the velocity field is geodesic and is aligned with a Killing vector field of unit norm, it describes a unique local frame where all forces (like those induced by a temperature gradient) vanish.

  20. 20.

    We recall that \(\varepsilon\) has dimensions of energy density or equivalently \((\mathrm{length})^{-3}\), therefore the energy–momentum tensor and the Cotton–York tensor have the same natural dimensions.

  21. 21.

    The subscript t stands for time-like and refers to the nature of the vector u. For an exhaustive review on Petrov & Segre classification of three-dimensional geometries see [59] (useful references are also [60–62]).

  22. 22.

    I thank Jakob Gath for clarifying this point.

  23. 23.

    This is a local property. In the flat or hyperbolic cases, a quotient by a discrete subgroup of the isometry group is possible and allows to reshape the global structure, making the horizon compact without conical singularities (a two-torus for example).

  24. 24.

    The Killing vector ∂ t is time-like and normalized at the boundary, where it coincides with the velocity field of the fluid, but its norm gets altered along the holographic coordinate, towards the horizon.

  25. 25.

    This family includes Gödel space–time (see [67, 68] for more information). The important issue of closed time-like curves emerges as a consequence of the lack of global hyperbolicity. This was discussed in [20–22], in relation with holographic fluids. When the bulk geometry has hyperbolic horizon, this caveat can be circumvented.

  26. 26.

    In 1919, Weyl exhibited multipolar Ricci-flat solutions, which do not seem extendible to the Einstein case (see [69] for details).

  27. 27.

    Use the expression for the Ricci tensor for Papapetrou–Randers geometries (13.68), impose tracelessness and extract λ. Then use (13.69) and (13.54) and conclude that q must be constant and related to μ. Combine these results and reach the conclusion that all solutions are fibrations over a two-dimensional space with metric \(\mathrm{d}\ell^{2}\) of constant curvature \(\hat{R} = 6\lambda - 2\mu ^{2}/9\). They are thus homogeneous spaces of either positive (S 2), null (\(\mathbb{R}^{2}\)) or negative curvature (H 2).

  28. 28.

    As usual with instantons, self-duality selects ground states, but exact excited states can also exist.

  29. 29.

    Recently this was discussed for a non-stationary solution of Einstein’s equations [72].

  30. 30.

    In this case, (13.21) is traded for \(M = n\left (1 - k^{2}\left (4n^{2} - a^{2}\right )\right )\) (see also [74]).

  31. 31.

    Our conventions are: \(A_{(\mu \nu )} = 1/2\left (A_{\mu \nu } + A_{\nu \mu }\right )\) and \(A_{[\mu \nu ]} = 1/2\left (A_{\mu \nu } - A_{\nu \mu }\right )\).

References

  1. E.T. Newman, L. Tamburino, T.J. Unti, Empty-space generalization of the Schwarzschild metric. J. Math. Phys. 4, 915 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. T. Eguchi, A.J. Hanson, Self-dual solutions to Euclidean gravity. Ann. Phys. 120, 82 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. T. Eguchi, A.J. Hanson, Gravitational instantons. Gen. Rel. Grav. 11, 315 (1979)

    Article  MathSciNet  Google Scholar 

  4. M.F. Atiyah, N.J. Hitchin, Low-energy scattering of non-abelian monopoles. Phys. Lett. 107A, 21 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.S. Ward, Integrable and solvable systems, and relations among them. Phil. Trans. R. Soc. Lond. A315, 451 (1985)

    Article  ADS  Google Scholar 

  6. G.W. Gibbons, C.N. Pope, â„‚ â„™ 2 as a gravitational instanton. Comm. Math. Phys. 61, 239 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. R.S. Ward, Self-dual space–times with cosmological constant. Comm. Math. Phys. 78, 1 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C.R. Lebrun, â„‹-space with a cosmological constant. Proc. R. Soc. Lond. A380, 171 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Pedersen, Eguchi–Hanson metrics with cosmological constant. Class. Quant. Grav. 2, 579 (1985)

    Article  ADS  MATH  Google Scholar 

  10. H. Pedersen, Einstein metrics, spinning top motions and monopoles. Math. Ann. 274, 35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Pedersen, Y.S. Poon, Hyper-Kähler metrics and a generalization of the Bogomolny equations. Comm. Math. Phys. 117, 569 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Pedersen, Y.S. Poon, Kähler surfaces with zero scalar curvature. Class. Quant. Grav. 7, 1707 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Przanowski, Killing vector fields in self-dual, Euclidean Einstein spaces with Λ ≠ 0. J. Math. Phys. 32, 1004 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. K.P. Tod, A comment on a paper of Pedersen and Poon. Class. Quant. Grav. 8, 1049 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. K.P. Tod, Self-dual Einstein metrics from the Painlevé VI equation. Phys. Lett. A190, 221 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. N.J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations. J. Differ. Geom. 42, 30 (1995)

    MathSciNet  MATH  Google Scholar 

  17. R. Maszczyk, L.J. Mason, N.M.J. Woodhouse, Self-dual Bianchi metric and Painlevé transcendents. Class. Quant. Grav. 11, 65 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D.M.J. Calderbank, H. Pedersen, Self-dual spaces with complex structures, Einstein–Weyl geometry and geodesics. Ann. Inst. Fourier 50, 921 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.M.J. Calderbank, H. Pedersen, Self-dual Einstein metrics with torus symmetry. J. Differ. Geom. 60, 485 (2002)

    MathSciNet  MATH  Google Scholar 

  20. R.G. Leigh, A.C. Petkou, P.M. Petropoulos, Holographic three-dimensional fluids with non-trivial vorticity. Phys. Rev. D85, 086010 (2012) [arXiv:1108.1393 [hep-th]]

    Google Scholar 

  21. R.G. Leigh, A.C. Petkou, P.M. Petropoulos, Holographic fluids with vorticity and analogue gravity systems. JHEP 1211, 121 (2012) [arXiv:1205.6140 [hep-th]]

    Google Scholar 

  22. M.M. Caldarelli, R.G. Leigh, A.C. Petkou, P.M. Petropoulos, V. Pozzoli, K. Siampos, Vorticity in holographic fluids. Proc. Sci. Corfu11, 076 (2012) [arXiv:1206.4351 [hep-th]]

    Google Scholar 

  23. A. Mukhopadhyay, A.C. Petkou, P.M. Petropoulos, V. Pozzoli, K. Siampos, Holographic perfect fluidity, Cotton energy–momentum duality and transport properties. JHEP 04, 136 (2014) [arXiv:1309.2310 [hep-th]]

    Google Scholar 

  24. S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories. Ann. Phys. 140, 372 (1982); Erratum-ibid. 185, 406 (1988); Three-dimensional massive gauge theories. Phys. Rev. Lett. 48, 975 (1982)

    Google Scholar 

  25. M. Cahen, R. Debever, L. Defrise, A complex vectorial formalism in general relativity. J. Math. Mech. 16, 761 (1967)

    MathSciNet  MATH  Google Scholar 

  26. M.F. Atiyah, N.J. Hitchin, I.M. Singer, Self-duality in four dimensional Riemannian geometry. Proc. Roy. Soc. Lond. A362, 425 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Eguchi, P.B. Gilkey, A.J. Hanson, Gravitation, gauge theories and differential geometry. Phys. Rept. 66, 213 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  28. G.W. Gibbons, S.W. Hawking, Classification of gravitational instanton symmetries. Commun. Math. Phys. 66, 291 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  29. C.R. Lebrun, Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. K. Zoubos, Holography and quaternionic Taub–NUT. JHEP 0212, 037 (2002) [arXiv:hep-th/0209235]

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Zoubos, A Conformally invariant holographic two point function on the Berger sphere. JHEP 0501, 031 (2005) [arXiv:hep-th/0403292]

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Fefferman, C.R. Graham, Conformal invariants, in Elie Cartan et les mathématiques d’aujourd’hui, Astérisque, 1985, numéro hors série Soc. Math. France, Paris, 95

    Google Scholar 

  33. C. Fefferman, C.R. Graham, The ambient metric, arXiv:0710.0919 [math.DG]

    Google Scholar 

  34. K. Skenderis, S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence. Phys. Lett. B472, 316 (2000) [arXiv:hep-th/9910023]

    Article  ADS  MathSciNet  Google Scholar 

  35. S. de Haro, K. Skenderis, S.N. Solodukhin, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondance. Commun. Math. Phys. 217, 595 (2001) [arXiv:hep-th/0002230]

    Article  ADS  MATH  Google Scholar 

  36. I. Papadimitriou, K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes. JHEP 0508, 004 (2005) [arXiv:hep-th/0505190]

    Article  ADS  MathSciNet  Google Scholar 

  37. D.S. Mansi, A.C. Petkou, G. Tagliabue, Gravity in the 3 + 1-split formalism I: holography as an initial value problem. Class. Quant. Grav. 26, 045008 (2009) [arXiv:0808.1212 [hep-th]]

    Google Scholar 

  38. D.S. Mansi, A.C. Petkou, G. Tagliabue, Gravity in the 3 + 1-split formalism II: self-duality and the emergence of the gravitational Chern–Simons in the boundary. Class. Quant. Grav. 26, 045009 (2009) [arXiv:0808.1213 [hep-th]]

    Google Scholar 

  39. G.W. Gibbons, C.N. Pope, The positive action conjecture and asymptotically Euclidean metrics in quantum gravity. Commun. Math. Phys. 66, 267 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Bourliot, J. Estes, P.M. Petropoulos, Ph. Spindel, Gravitational instantons, self-duality and geometric flows. Phys. Rev. D81, 104001 (2010) [arXiv:0906.4558 [hep-th]]

    Google Scholar 

  41. F. Bourliot, J. Estes, P.M. Petropoulos, Ph. Spindel, G3-homogeneous gravitational instantons. Class. Quant. Grav. 27, 105007 (2010) [arXiv:0912.4848 [hep-th]]

    Google Scholar 

  42. P.M. Petropoulos, V. Pozzoli, K. Siampos, Self-dual gravitational instantons and geometric flows of all Bianchi types. Class. Quant. Grav. 28, 245004 (2011) [arXiv:1108.0003 [hep-th]]

    Google Scholar 

  43. V.A. Belinsky, G.W. Gibbons, D.N. Page, C.N. Pope, Asymptotically Euclidean Bianchi IX metrics in quantum gravity. Phys. Lett. 76B, 433 (1978)

    Article  ADS  Google Scholar 

  44. R.G. Leigh, A.C. Petkou, Gravitational duality transformations on (A)dS4. JHEP 0711, 079 (2007) [arXiv:0704.0531 [hep-th]]

    Google Scholar 

  45. S. de Haro, A.C. Petkou, Holographic aspects of electric–magnetic dualities. J. Phys. Conf. Ser. 110, 102003 (2008) [arXiv:0710.0965 [hep-th]]

    Google Scholar 

  46. S. de Haro, Dual gravitons in AdS4 / CFT3 and the holographic cotton tensor. JHEP 0901, 042 (2009) [arXiv:0808.2054 [hep-th]]

    Google Scholar 

  47. O. Miskovic, R. Olea, Topological regularization and self-duality in four-dimensional anti-de Sitter gravity. Phys. Rev. D79, 124020 (2009) [arXiv:0902.2082 [hep-th]]

    Google Scholar 

  48. I. Bakas, Energy-momentum/Cotton tensor duality for AdS4 black holes. JHEP 0901, 003 (2009) [arXiv:0809.4852 [hep-th]]

    Google Scholar 

  49. I. Bakas, Duality in linearized gravity and holography. Class. Quant. Grav. 26, 065013 (2009) [arXiv:0812.0152 [hep-th]]

    Google Scholar 

  50. P. Romatschke, New developments in relativistic viscous hydrodynamics. Int. J. Mod. Phys. E19, 1 (2010) [arXiv:0902.3663 [hep-ph]]

    Google Scholar 

  51. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A45, 473001 (2012) [arXiv:1205.5040 [hep-th]]

    Google Scholar 

  52. V.E. Hubeny, S. Minwalla, M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [hep-th]

    Google Scholar 

  53. M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence. Class. Quant. Grav. 26, 224003 (2009) [arXiv:0905.4352 [hep-th]]

    Google Scholar 

  54. G.D. Moore, K.A. Sohrabi, Kubo formulæ for second-order hydrodynamic coefficients. Phys. Rev. Lett. 106, 122302 (2011) [arXiv:1007.5333 [hep-ph]]

    Google Scholar 

  55. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla, T. Sharma, Constraints on fluid dynamics from equilibrium partition functions. JHEP 1209, 046 (2012) [arXiv:1203.3544 [hep-th]]

    Google Scholar 

  56. A. Papapetrou, Champs gravitationnels stationnaires à symétrie axiale. Ann. Inst. H. Poincaré A4, 83 (1966)

    ADS  Google Scholar 

  57. G. Randers, On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59, 195 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  58. L.D. Landau, E.M. Lifchitz, Physique Théorique, vol. 5 Physique Statistique §27, MIR 1969

    Google Scholar 

  59. D.D.K. Chow, C.N. Pope, E. Sezgin, Classification of solutions in topologically massive gravity. Class. Quant. Grav. 27, 105001 (2010) [arXiv:0906.3559 [hep-th]]

    Google Scholar 

  60. G. Guralnik, A. Iorio, R. Jackiw, S.Y. Pi, Dimensionally reduced gravitational Chern–Simons term and its kink. Ann. Phys. 308, 222 (2003) [arXiv:hep-th/0305117]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. D. Grumiller, W. Kummer, The classical solutions of the dimensionally reduced gravitational Chern–Simons theory. Ann. Phys. 308, 211 (2003) [arXiv:hep-th/0306036]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. G. Moutsopoulos, P. Ritter, An exact conformal symmetry ansatz on Kaluza–Klein reduced TMG. Gen. Rel. Grav. 43, 3047 (2011) [arXiv:1103.0152 [hep-th]]

    Google Scholar 

  63. J.F. Plebañski, M. Demiaǹski, Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. (NY) 98, 98 (1976)

    Article  ADS  MATH  Google Scholar 

  64. N. Alonso-Alberca, P. Meessen, T. Ortin, Supersymmetry of topological Kerr–Newman–Taub–NUT–AdS space–times. Class. Quant. Grav. 17, 2783 (2000) [arXiv:0003071 [hep-th]]

    Google Scholar 

  65. D. Klemm, V. Moretti, L. Vanzo, Rotating topological black holes. Phys. Rev. D57, 6127 (1998) [Erratum-ibid. D60 (1999) 109902] [arXiv:gr-qc/9710123]

    Google Scholar 

  66. D. Klemm, A. Maiorana, Fluid dynamics on ultrastatic spacetimes and dual black holes (2014). arXiv:1404.0176 [hep-th]

    Google Scholar 

  67. A.K. Raychaudhuri, S.N. Guha Thakurta, Homogeneous space–times of the Gödel type. Phys. Rev. D22, 802 (1980)

    ADS  Google Scholar 

  68. M.J. Rebouças, J. Tiomno, Homogeneity of Riemannian space–times of Gödel type. Phys. Rev. D28, 1251 (1983)

    ADS  Google Scholar 

  69. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions to Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics (CUP, Cambridge, 2003)

    Google Scholar 

  70. D. Anninos, W. Li, M. Padi, W. Song, A. Strominger, Warped AdS3 black holes. JHEP 0903, 130 (2009) [arXiv:0807.3040 [hep-th]]

    Google Scholar 

  71. D. Anninos, S. de Buyl, S. Detournay, Holography for a de Sitter–Esque geometry. JHEP 1105, 003 (2011) [arXiv:1102.3178 [hep-th]]

    Google Scholar 

  72. G.B. de Freitas, H.S. Reall, Algebraically special solutions in AdS/CFT (2014). arXiv:1403.3537 [hep-th]

    Google Scholar 

  73. P.M. Petropoulos, P. Vanhove, Gravity, strings, modular and quasimodular forms. Ann. Math. Blaise Pascal 19, 379 (2012) [arXiv:1206.0571 [math-ph]]

    Google Scholar 

  74. K. Behrndt, G. Dall’Agata, D. Lüst, S. Mahapatra, Intersecting six-branes from new seven manifolds with G 2 holonomy. JHEP 0208, 027 (2002) [arXiv:hep-th/0207117]

    Google Scholar 

  75. B.S. Acharya, M. O’Loughlin, Self-duality in D ≤ eight-dimensional Euclidean gravity. Phys. Rev. D55, 4521 (1997) [arXiv:hep-th/9612182]

    ADS  MathSciNet  Google Scholar 

  76. E.G. Floratos, A. Kehagias, Eight-dimensional self-dual spaces. Phys. Lett. B427, 283 (1998) [arXiv:hep-th/9802107]

    Article  ADS  MathSciNet  Google Scholar 

  77. I. Bakas, E.G. Floratos, A. Kehagias, Octonionic gravitational instantons. Phys. Lett. B445, 69 (1998) [arXiv:hep-th/9810042]

    Article  ADS  MathSciNet  Google Scholar 

  78. A. Bilal, J.-P. Derendinger, K. Sfetsos, (Weak) G 2 holonomy from self-duality, flux and supersymmetry. Nucl. Phys. B628, 112 (2002) [arXiv:hep-th/0111274]

    Google Scholar 

  79. R. Hernandez, K. Sfetsos, An eight-dimensional approach to G 2 manifolds. Phys. Lett. B536, 294 (2002) [arXiv:hep-th/0202135]

    Article  ADS  MathSciNet  Google Scholar 

  80. J. Zanelli, Introduction to Chern–Simons theories. Contribution to the 7th Aegean summer school, Paros (GR), September 2013

    Google Scholar 

  81. J. Ehlers, Contributions to the relativistic mechanics of continuous media. Gen. Rel. Grav. 25, 1225 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. H. van Elst, C. Uggla, General relativistic 1 + 3-orthonormal frame approach revisited. Class. Quant. Grav. 14, 2673 (1997) [arXiv:gr-qc/9603026]

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

I wish to thank the organizers of the 7th Aegean summer school Beyond Einstein’s theory of gravity, where these lectures were delivered. The material presented here is borrowed from recent or on-going works realized in collaboration with M. Caldarelli, C. Charmousis, J.–P. Derendinger, J. Gath, R. Leigh, A. Mukhopadhyay, A. Petkou, V. Pozzoli, K. Sfetsos, K. Siampos and P. Vanhove. I also benefited from interesting discussions with I. Bakas, D. Klemm, N. Obers and Ph. Spindel. The feedback from the Southampton University group was also valuable during a recent presentation of this work in their seminar. This research was supported by the LABEX P2IO, the ANR contract 05-BLAN-NT09-573739, the ERC Advanced Grant 226371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marios Petropoulos .

Editor information

Editors and Affiliations

Appendices

Appendix 1: On Vector-Field Congruences

We consider a manifold endowed with a space–time metric of the generic form

$$\displaystyle{ \mathrm{d}s^{2} = g_{\mu \nu }\mathrm{d}\mathrm{x}^{\mu }\mathrm{d}\mathrm{x}^{\nu } =\eta _{\mu \nu }E^{\mu }E^{\nu } }$$

(to avoid inflation of indices we do not distinguish between flat and curved ones). Consider now an arbitrary time-like vector field u, normalised as \(u^{\mu }u_{\mu } = -1\), later identified with the fluid velocity. Its integral curves define a congruence which is characterised by its acceleration, shear, expansion and vorticity (see e.g. [81, 82]):

$$\displaystyle{ \nabla _{\mu }u_{\nu } = -u_{\mu }a_{\nu } + \frac{1} {D - 1}\varTheta \varDelta _{\mu \nu } +\sigma _{\mu \nu } +\omega _{\mu \nu } }$$

withFootnote 31

$$\displaystyle\begin{array}{rcl} a_{\mu }& =& u^{\nu }\nabla _{\nu }u_{\mu },\quad \varTheta = \nabla _{\mu }u^{\mu }\;, {}\\ \sigma _{\mu \nu }& =& \frac{1} {2}\varDelta _{\mu }^{\rho }\varDelta _{\nu }^{\sigma }\left (\nabla _{\rho }u_{\sigma } + \nabla _{\sigma }u_{\rho }\right ) - \frac{1} {D - 1}\varDelta _{\mu \nu }\varDelta ^{\rho \sigma }\nabla _{\rho }u_{\sigma } {}\\ & =& \nabla _{(\mu }u_{\nu )} + a_{(\mu }u_{\nu )} - \frac{1} {D - 1}\varDelta _{\mu \nu }\nabla _{\rho }u^{\rho }\;, {}\\ \omega _{\mu \nu }& =& \frac{1} {2}\varDelta _{\mu }^{\rho }\varDelta _{\nu }^{\sigma }\left (\nabla _{\rho }u_{\sigma } -\nabla _{\sigma }u_{\rho }\right ) = \nabla _{[\mu }u_{\nu ]} + u_{[\mu }a_{\nu ]}\;. {}\\ \end{array}$$

The latter allows to define the vorticity form as

$$\displaystyle{ 2\omega =\omega _{\mu \nu }\,\mathrm{d}\mathrm{x}^{\mu } \wedge \mathrm{ d}\mathrm{x}^{\nu } =\mathrm{ d}\mathrm{u} +\mathrm{ u} \wedge \mathrm{ a}\;. }$$
(13.65)

The time-like vector field u has been used to decompose any tensor field on the manifold in transverse and longitudinal components. The decomposition is performed by introducing the longitudinal and transverse projectors:

$$\displaystyle{ U_{\nu }^{\mu } = -u^{\mu }u_{\nu },\quad \varDelta _{\nu }^{\mu } = u^{\mu }u_{\nu } +\delta _{ \nu }^{\mu }\;, }$$
(13.66)

where Δ μ ν is also the induced metric on the surface orthogonal to u. The projectors satisfy the usual identities:

$$\displaystyle{ U_{\rho }^{\mu }U_{\nu }^{\rho } = U_{\nu }^{\mu },\quad U_{\rho }^{\mu }\varDelta _{\nu }^{\rho } = 0,\quad \varDelta _{\rho }^{\mu }\varDelta _{\nu }^{\rho } =\varDelta _{ \nu }^{\mu },\quad U_{\mu }^{\mu } = 1,\quad \varDelta _{\mu }^{\mu } = D - 1\;, }$$

and similarly:

$$\displaystyle{ u^{\mu }a_{\mu } = 0,\quad u^{\mu }\sigma _{\mu \nu } = 0,\quad u^{\mu }\omega _{\mu \nu } = 0,\quad u^{\mu }\nabla _{\nu }u_{\mu } = 0,\quad \varDelta _{\mu }^{\rho }\nabla _{\nu }u_{\rho } = \nabla _{\nu }u_{\mu }\;. }$$

Appendix 2: Papapetrou–Randers Backgrounds and Aligned Fluids

In this appendix, we collect a number of useful expressions for stationary Papapetrou–Randers three-dimensional geometries (13.39) with B = 1, and for fluids in perfect equilibrium on these backgrounds. The latter follow geodesic congruences, aligned with the normalized Killing vector ∂ t , with velocity one-form given in (13.41).

We introduce the inverse two-dimensional metric a ij, and b i such that

$$\displaystyle{ a^{\mathit{ij}}a_{\mathit{ jk}} =\delta _{ k}^{i}\;,\quad b^{i} = a^{\mathit{ij}}b_{ j}\;. }$$

The three-dimensional metric components read:

$$\displaystyle{ g_{00} = -1\;,\quad g_{0i} = b_{i}\;,\quad g_{\mathit{ij}} = a_{\mathit{ij}} - b_{i}b_{j}\;, }$$

and those of the inverse metric:

$$\displaystyle{ g^{00} = a^{\mathit{ij}}b_{ i}b_{j} - 1\;,\quad g^{0i} = b^{i}\;,\quad g^{\mathit{ij}} = a^{\mathit{ij}}\;. }$$

Finally,

$$\displaystyle{ \sqrt{\vert g\vert } = \sqrt{a}\;, }$$

where a is the determinant of the symmetric matrix with entries a ij .

Using (13.41) and (13.65) we find that the vorticity of the aligned fluid can be written as the following two-form (the acceleration term is absent here)

$$\displaystyle{ \omega = \frac{1} {2}\omega _{\mu \nu }\mathrm{d}x^{\mu } \wedge \mathrm{ d}x^{\nu } = \frac{1} {2}\mathrm{d}\mathrm{b}\;. }$$

The Hodge-dual of ω μ ν is

$$\displaystyle{ \psi ^{\mu } =\eta ^{\mu \nu \rho }\omega _{\nu \rho } \Leftrightarrow \omega _{\nu \rho } = -\frac{1} {2}\eta _{\nu \rho \mu }\psi ^{\mu }\;. }$$

In 2 + 1 dimensions it is aligned with the velocity field:

$$\displaystyle{ \psi ^{\mu } = qu^{\mu }\;, }$$

where, in our set-up,

$$\displaystyle{ q(x) = -\frac{\epsilon ^{\mathit{ij}}\partial _{i}b_{j}} {\sqrt{a}} \;. }$$

It is a static scalar field that we call the vorticity strength, carrying dimensions of inverse length. Together with \(\hat{R}(x)\)—the curvature of the two-dimensional metric \(\text{d}\ell^{2}\) introduced in (13.42), the above scalar carries all relevant information for the curvature of the Papapetrou–Randers geometry. We quote for latter use the three-dimensional curvature scalar:

$$\displaystyle{ R =\hat{ R} + \frac{q^{2}} {2} \;, }$$
(13.67)

the three-dimensional Ricci tensor

$$\displaystyle{ R_{\mu \nu }\,\mathrm{d}x^{\mu }\mathrm{d}x^{\nu } = \frac{q^{2}} {2} \mathrm{u}^{2} + \frac{\hat{R} + q^{2}} {2} \mathrm{d}\ell^{2} -\mathrm{ u}\,\mathrm{d}x^{\rho }u^{\sigma }\eta _{\rho \sigma \mu }\nabla ^{\mu }q\;, }$$
(13.68)

as well as the three-dimensional Cotton–York tensor:

$$\displaystyle\begin{array}{rcl} C_{\mu \nu }\,\mathrm{d}x^{\mu }\mathrm{d}x^{\nu }& =& \frac{1} {2}\left (\hat{\nabla }^{2}q + \frac{q} {2}(\hat{R} + 2q^{2})\right )\left (2\mathrm{u}^{2} +\mathrm{ d}\ell^{2}\right ) \\ & & -\frac{1} {2}\left (\hat{\nabla }_{i}\hat{\nabla }_{j}q\,\mathrm{d}x^{i}\mathrm{d}x^{j} +\hat{ \nabla }^{2}q\,\mathrm{u}^{2}\right ) \\ & & -\frac{\mathrm{u}} {2}\mathrm{d}x^{\rho }u^{\sigma }\eta _{\rho \sigma \mu }\nabla ^{\mu }(\hat{R} + 3q^{2})\;. {}\end{array}$$
(13.69)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petropoulos, P.M. (2015). Gravitational Duality, Topologically Massive Gravity and Holographic Fluids. In: Papantonopoulos, E. (eds) Modifications of Einstein's Theory of Gravity at Large Distances. Lecture Notes in Physics, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-10070-8_13

Download citation

Publish with us

Policies and ethics