Advertisement

Electrode Materials: State-of-the-Art and Experiments

  • Naser Pour Aryan
  • Hans Kaim
  • Albrecht Rothermel
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC, volume 78)

Abstract

Platinum is the most commonly used electrode material. The charge injection limit for platinum electrodes was found to be 400 μC∕cm2 in [4]. Tim Boretius et al. have reported a value of only 75 μC∕cm2 [3]. Platinum electrodes have proven success in practice, for example in many cochlear implants. Because of their relatively low charge injection capacity, they are usually used where large electrodes are applicable as in intracortical implant [8]. The limit for neural stimulation regarding tissue safety has been determined to be 1 mC∕cm2. In order to increase the charge injection capacity of platinum, various approaches have been proposed in the past few decades, like the galvanization of platinum black or gray. Although platinum black possesses a highly porous layer and therefore high charge injection capacity, its deposition often requires a lead containing electrolyte which limits its application because of cytotoxicity concerns.

Keywords

Cochlear Implant Charge Injection Platinum Black Faradaic Reaction Iridium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). Biomedical Engineering, IEEE Transactions on 35(6):494–495, DOI  10.1109/10.2122 CrossRefGoogle Scholar
  2. 2.
    Bellanger G, Rameau JJ (1995) Corrosion of titanium nitride deposits on AISI 630 stainless steel used in radioactive water with and without chloride at pH 11. Electrochimica Acta 40(15):2519–2532, DOI  10.1016/0013-4686(94)00326-V, URL http://www.sciencedirect.com/science/article/pii/001346869400326V
  3. 3.
    Boretius T, Jurzinsky T, Koehler C, Kerzenmacher S, Hillebrecht H, Stieglitz T (2011) High-porous platinum electrodes for functional electrical stimulation. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 5404–5407, DOI  10.1109/IEMBS.2011.6091336
  4. 4.
    Brummer SB, Robblee LS, Hambrecht FT (1983) Criteria for selecting electrodes for electrical stimulation: Theoretical and practical considerations. Annals of the New York Academy of Sciences 405(1):159–171, DOI  10.1111/j.1749-6632.1983.tb31628.x, URL http://dx.doi.org/10.1111/j.1749-6632.1983.tb31628.x
  5. 5.
    Cogan SF (2008) Neural stimulation and recording electrodes. Tech. rep., EIC LaboratoriesGoogle Scholar
  6. 6.
    Cogan SF, Troyk PR, Ehrlich J, Plante TD (2005) In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. Biomedical Engineering, IEEE Transactions on 52(9):1612–1614, DOI  10.1109/TBME.2005.851503 CrossRefGoogle Scholar
  7. 7.
    Cui XT, Zhou DD (2007) Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 15(4):502–508, DOI  10.1109/TNSRE.2007.909811 CrossRefGoogle Scholar
  8. 8.
    Hassler C, Guy J, Nietzschmann M, Staiger JF, Stieglitz T (2011) Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 644–647, DOI  10.1109/IEMBS.2011.6090143
  9. 9.
    Janders M, Egert U, Stelzle M, Nisch W (1996) Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. In: Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol 1, pp 245–247 vol. 1, DOI  10.1109/IEMBS.1996.656936
  10. 10.
    Kaim H (2013) Charakterisierung und elektrische Ansteuerung von Stimulations-Elektroden. Diplomarbeit, University of UlmGoogle Scholar
  11. 11.
    Lavrenko VA, Shvets VA, Makarenko GN (2001) Comparative study of the chemical resistance of titanium nitride and stainless steel in media of the oral cavity. Powder Metallurgy and Metal Ceramics 40:630–636, URL http://dx.doi.org/10.1023/A:1015296323497, 10.1023/A:1015296323497
  12. 12.
    Lee IS (2004) Neural cells on iridium oxide. Key Engineering Materials 254–256:805–808CrossRefGoogle Scholar
  13. 13.
    Norlin A, Pan J, Leygraf C (2002) Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Biomol Eng 19(2–6):67–71, URL http://www.biomedsearch.com/nih/Investigation-interfacial-capacitance-Pt-Ti/12202164.html
  14. 14.
    Nunes Kirchner C, Hallmeier KH, Szargan R, Raschke T, Radehaus C, Wittstock G (2007) Evaluation of thin film titanium nitride electrodes for electroanalytical applications. Electroanalysis 19(10):1023–1031, DOI  10.1002/elan.200703832, URL http://dx.doi.org/10.1002/elan.200703832
  15. 15.
    Perillo PM (2006) Corrosion behavior of coatings of titanium nitride and titanium-titanium nitride on steel substrates. CORROSION 62Google Scholar
  16. 16.
    Poppendieck W (2010) Untersuchungen zum Einsatz neuer Elektrodenmaterialien: Und deren Evaluation als Reiz- und Ableitelektrode. Südwestdeutscher Verlag, URL http://books.google.de/books?id=Z1xnRwAACAAJ
  17. 17.
    Pour Aryan N, Asad M, Brendler C, Kibbel S, Heusel G, Rothermel A (2011) In vitro study of titanium nitride electrodes for neural stimulation. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 2866–2869, DOI  10.1109/IEMBS.2011.6090791
  18. 18.
    Pour Aryan N, Brendler C, Rieger V, Kibbel S, Harscher A, Heusel G, Rothermel A (2012a) A comparison of TiN, iridium and iridium oxide stimulating electrodes for neural stimulation. In: International Association of Science and Technology for Development,BioMed, 2012 Annual International ConferenceGoogle Scholar
  19. 19.
    Pour Aryan N, Brendler C, Rieger V, Schleehauf S, Heusel G, Rothermel A (2012b) In vitro study of iridium electrodes for neural stimulation. In: Engineering in Medicine and Biology Society,EMBC, 2012 Annual International Conference of the IEEEGoogle Scholar
  20. 20.
    Robblee LS, Rose TL (1990) Electrochemical Guidelines for Selection of Protocols and Electrode Materials for Neural Stimulation. In Neural Prostheses (Hrsg.: Agnew, W.F.; McCreery, D.B.), Prentice Hall, Englewood Cliffs, New Jersey, S. 25–66Google Scholar
  21. 21.
    Rose TL, Robblee LS (1990) Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). Biomedical Engineering, IEEE Transactions on 37(11):1118–1120, DOI  10.1109/10.61038 CrossRefGoogle Scholar
  22. 22.
    Rothermel A, Liu L, Aryan NP, Fischer M, Wünschmann J, Kibbel S, Harscher A (2009) A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE Journal of Solid-State Circuits 44(1):290–299CrossRefGoogle Scholar
  23. 23.
    Rubinstein JT, Spelman FA, Soma M, Suesserman MF (1987) Current density profiles of surface mounted and recessed electrodes for neural prostheses. Biomedical Engineering, IEEE Transactions on BME-34(11):864–875, DOI  10.1109/TBME.1987.326007 CrossRefGoogle Scholar
  24. 24.
    Schaldach M, Hubmann M, Weikl A, Hardt R (1990) Sputter-deposited TiN electrode coatings for superior sensing and pacing performance. Pacing and Clinical Electrophysiology 13(12):1891–1895, DOI  10.1111/j.1540-8159.1990.tb06911.x, URL http://dx.doi.org/10.1111/j.1540-8159.1990.tb06911.x
  25. 25.
    Shanmugasundaram B, Gluckman BJ (2011) Micro-reaction chamber electrodes for neural stimulation and recording. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 656–659, DOI  10.1109/IEMBS.2011.6090146
  26. 26.
    Stieglitz T (2004) Materials for stimulation and recording. Tech. rep., Neural Prosthetics Group, Fraunhofer Institute for Biomedical EngineeringGoogle Scholar
  27. 27.
    Terasawa Y, Tashiro H, Uehara A, Saitoh T, Ozawa M, Tokuda T, Ohta J (2006) The development of a multichannel electrode array for retinal prostheses. Journal of Artificial Organs 9:263–266, URL http://dx.doi.org/10.1007/s10047-006-0352-1, 10.1007/s10047-006-0352-1
  28. 28.
    Troyk PR, Detlefsen DE, Cogan SF, Ehrlich J, Bak M, McCreery DB, Bullara L, Schmidt E (2004) “Safe” charge-injection waveforms for iridium oxide (AIROF) microelectrodes. In: Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, vol 2, pp 4141–4144, DOI  10.1109/IEMBS.2004.1404155
  29. 29.
    Vanhoestenberghe A, Donaldson N, Lovell N, Suaning G (2008) Hermetic encapsulation of an implantable vision prosthesis - combining implant fabrication philosophies. In: IFESS 2008 - from movement to mind, URL http://discovery.ucl.ac.uk/1318417/
  30. 30.
    Venkatraman S, Hendricks J, King Z, Sereno A, Richardson-Burns S, Martin D, Carmena J (2011) In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 19(3):307–316, DOI  10.1109/TNSRE.2011.2109399 CrossRefGoogle Scholar
  31. 31.
    Weiland JD, Anderson DJ (2000) Chronic neural stimulation with thin-film, iridium oxide electrodes. Biomedical Engineering, IEEE Transactions on 47(7):911–918, DOI  10.1109/10.846685 CrossRefGoogle Scholar
  32. 32.
    Weiland JD, Anderson DJ, Humayun MS (2002) In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. Biomedical Engineering, IEEE Transactions on 49(12):1574–1579, DOI  10.1109/TBME.2002.805487 CrossRefGoogle Scholar
  33. 33.
    Wilks SJ, Woolley AJ, Ouyang L, Martin DC, Otto KJ (2011) In vivo polymerization of poly (3,4-ethylenedioxythiophene) (PEDOT) in rodent cerebral cortex. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 5412–5415, DOI  10.1109/IEMBS.2011.6091338
  34. 34.
    Winkin N, Mokwa W (2012) Flexible multi-electrode array with integrated bendable CMOS-Chip for implantable systems. In: Engineering in Medicine and Biology Society,EMBC, 2012 Annual International Conference of the IEEEGoogle Scholar
  35. 35.
    Zhou DM, Greenberg RJ (2003) Electrochemical characterization of titanium nitride microelectrode arrays for charge-injection applications. In: Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, vol 2, pp 1964–1967 Vol. 2, DOI  10.1109/IEMBS.2003.1279831

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Naser Pour Aryan
    • 1
  • Hans Kaim
    • 1
  • Albrecht Rothermel
    • 1
  1. 1.Institute of MicroelectronicsUniversity of UlmUlmGermany

Personalised recommendations