Advertisement

Primary Current Distribution and Electrode Geometry

  • Naser Pour Aryan
  • Hans Kaim
  • Albrecht Rothermel
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC, volume 78)

Abstract

The current density pattern on the surface of an electrode depends on the electrode shape and position [9, 11, 12, 14, 17]. It affects the corrosion behavior of the electrodes considerably. If electrode polarization is ignored, it was shown in [12] that on a disk electrode, with the surface in the same level as the surface of the surrounding insulator, the current density increases from the center of the disk while approaching the edge, with theoretically an infinite value at the edge. This assumption (no electrode polarization) can be made if the potential on the electrolyte side of the double layer is equal to that of the electrode. The current density under this condition is called primary current distribution. This state prevails at high frequency when the double layer capacitance behaves as a short circuit [14].

Keywords

Current Distribution Cochlear Implant Disk Electrode Electrode Polarization Current Density Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahuja AK, Behrend MR, Whalen JJ, Humayun MS, Weiland JD (2008) The dependence of spectral impedance on disc microelectrode radius. Biomedical Engineering, IEEE Transactions on 55(4):1457–1460, DOI  10.1109/TBME.2007.912430 CrossRefGoogle Scholar
  2. 2.
    Barnett DW, Fahy JB, Wu HJ, Lytle A, Kim Y (1988) Finite element model applications in defibrillation and external cardiac pacing. In: Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, pp 200–201 vol. 1, DOI  10.1109/IEMBS.1988.94477
  3. 3.
    Behrend MR, Ahuja AK, Weiland JD (2008) Dynamic current density of the disk electrode double-layer. Biomedical Engineering, IEEE Transactions on 55(3):1056–1062, DOI  10.1109/TBME.2008.915723 CrossRefGoogle Scholar
  4. 4.
    Brummer S, Turner M (1975) Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes. Bioelectrochemistry and Bioenergetics 2(1):13–25, DOI  10.1016/0302-4598(75)80002-X, URL http://www.sciencedirect.com/science/article/pii/030245987580002X
  5. 5.
    Brummer SB, Turner MJ (1977a) Electrical stimulation with Pt electrodes: A method for determination of “real” electrode areas. Biomedical Engineering, IEEE Transactions on BME-24(5):436–439, DOI  10.1109/TBME.1977.326178 CrossRefGoogle Scholar
  6. 6.
    Brummer SB, Turner MJ (1977b) Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. Biomedical Engineering, IEEE Transactions on BME-24(1):59–63, DOI  10.1109/TBME.1977.326218 CrossRefGoogle Scholar
  7. 7.
    Clark GM, Shepherd RK, Patrick JF, Black RC, Tong YC (1983) Design and fabrication of the banded electrode arraya. Annals of the New York Academy of Sciences 405(1):191–201, DOI  10.1111/j.1749-6632.1983.tb31632.x, URL  http://dx.doi.org/10.1111/j.1749-6632.1983.tb31632.x
  8. 8.
    Henley IE, Fisher AC (2003) Computational electrochemistry: The simulation of voltammetry in microchannels with low conductivity solutions. The Journal of Physical Chemistry B 107(27):6579–6585, DOI  10.1021/jp030238k, URL http://pubs.acs.org/doi/abs/10.1021/jp030238k, http://pubs.acs.org/doi/pdf/10.1021/jp030238k
  9. 9.
    Humayun MS (2001) Intraocular retinal prosthesisGoogle Scholar
  10. 10.
    Hung A, Zhou D, Greenberg R, Judy J (2003) Dynamic electrochemical simulation of micromachined electrodes for neural-stimulation systems. In: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, pp 200–203, DOI  10.1109/CNE.2003.1196792
  11. 11.
    Ksienski DA (1992) A minimum profile uniform current density electrode. Biomedical Engineering, IEEE Transactions on 39(7):682–692, DOI  10.1109/10.142643 CrossRefGoogle Scholar
  12. 12.
    Newman J (1966) Resistance for flow of current to a disk. Journal of the electrochemical society, May, 501–502Google Scholar
  13. 13.
    Rubinstein JT (1988) Quasi-static analytical models of electrodes and electrode arrays for electrical stimulation of the cochlea, auditory nerve and cochlear nucleus. Thesis, University of WashingtonGoogle Scholar
  14. 14.
    Rubinstein JT, Spelman FA, Soma M, Suesserman MF (1987) Current density profiles of surface mounted and recessed electrodes for neural prostheses. Biomedical Engineering, IEEE Transactions on BME-34(11):864–875, DOI  10.1109/TBME.1987.326007 CrossRefGoogle Scholar
  15. 15.
    Shepherd RK, Murray MT, Hougiton ME, Clark GM (1985) Scanning electron microscopy of chronically stimulated platinum intracochlear electrodes. Biomaterials 6(4):237–242, DOI  10.1016/0142-9612(85)90019-5, URL http://www.sciencedirect.com/science/article/pii/0142961285900195
  16. 16.
    Wang B, Weiland JD (2012) Reduction of current density at disk electrode periphery by shaping current pulse edges. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp 5138–5141, DOI  10.1109/EMBC.2012.6347150
  17. 17.
    Wiley JD, Webster JG (1982) Analysis and control of the current distribution under circular dispersive electrodes. Biomedical Engineering, IEEE Transactions on BME-29(5):381–385, DOI href10.1109/TBME.1982.32491010.1109/TBME.1982.324910Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Naser Pour Aryan
    • 1
  • Hans Kaim
    • 1
  • Albrecht Rothermel
    • 1
  1. 1.Institute of MicroelectronicsUniversity of UlmUlmGermany

Personalised recommendations