Advertisement

Curvature-Based Registration for Slice Interpolation of Medical Images

  • Ahmadreza Baghaie
  • Zeyun Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8641)

Abstract

Slice interpolation is a fast growing field in medical image processing. Intensity-based interpolation and object-based interpolation are two major groups of methods in the literature. In this paper an object based method for slice interpolation using a modified version of curvature registration is proposed. Due to non-linear nature of image registration the results of forward and backward registration can be different. Therefore assuming a linear displacement between corresponding pixels of reference and moving image, a functional is minimized and the displacement fields for both reference and moving images with respect to the missing in-between slice are computed and used for reconstruction of the missing slice. The proposed approach is evaluated quantitatively by using the Mean Squared Difference (MSD) as metric. The produced results show significant visual improvement in preserving sharp edges in images.

Keywords

Image Registration Slice Interpolation Optimization Medical Images Mean Squared Difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goshtasby, A., Turner, D.A., Ackerman, L.V.: Matching of tomographic slices for interpolation. IEEE Trans. on Medical Imaging 11(4), 507–516 (1992)CrossRefGoogle Scholar
  2. 2.
    Higgins, W.E., Orlick, C.J., Ledell, B.E.: Nonlinear filtering approach to 3-D gray-scale image interpolation. IEEE Trans. on Medical Imaging 15(4), 580–587 (1996)CrossRefGoogle Scholar
  3. 3.
    Grevera, G.J., Udupa, J.K.: Shape-based interpolation of multidimensional grey-level images. IEEE Trans. on Medical Imaging 15(6), 881–892 (1996)CrossRefGoogle Scholar
  4. 4.
    Grevera, G.J., Udupa, J.K.: An objective comparison of 3-D image interpolation methods. IEEE Transactions on Medical Imaging 17(4), 642–652 (1998)CrossRefGoogle Scholar
  5. 5.
    Grevera, G.J., Udupa, J.K., Miki, Y.: A task-specific evaluation of three-dimensional image interpolation techniques. IEEE Trans. on Medical Imaging 18(2), 137–143 (1999)CrossRefGoogle Scholar
  6. 6.
    Lee, T.Y., Wang, W.H.: Morphology-based three-dimensional interpolation. IEEE Trans. on Medical Imaging 19(7), 711–721 (2000)CrossRefGoogle Scholar
  7. 7.
    Lee, T.-Y., Lin, C.-H.: Feature-guided shape-based image interpolation. IEEE Transactions on Medical Imaging 21(12), 1479–1489 (2002)CrossRefGoogle Scholar
  8. 8.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  9. 9.
    Penney, G.P., Schnabel, J.A., Rueckert, D., Viergever, M.A., Niessen, W.J.: Registration-based interpolation. IEEE Trans. on Medical Imaging 23(7), 922–926 (2004)CrossRefGoogle Scholar
  10. 10.
    Frakes, D.H., Dasi, L.P., Pekkan, K., Kitajima, H.D., Sundareswaran, K., Yoganathan, A.P., Smith, M.J.T.: A new method for registration-based medical image interpolation. IEEE Trans. on Medical Imaging 27(3), 370–377 (2008)CrossRefGoogle Scholar
  11. 11.
    Leng, J., Xu, G., Zhang, Y.: Medical image interpolation based on multi-resolution registration. Computers & Mathematics with Applications 66(1), 1–18 (2013)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its Applications 380, 107–124 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Modersitzki, J.: Numerical Methods for Image Registration. Numerical Mathematics and Scientific Computation. Oxford University Press, USA (2004)zbMATHGoogle Scholar
  14. 14.
    Modersitzki, J.: FAIR: flexible algorithms for image registration, vol. 6. SIAM (2009)Google Scholar
  15. 15.
    Kilmer, M.E., O’Leary, D.P.: Choosing regularization parameters in iterative methods for ill-posed problems. SIAM Journal on Matrix Analysis and Applications 22(4) (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ahmadreza Baghaie
    • 1
  • Zeyun Yu
    • 2
  1. 1.Department of Electrical EngineeringUniversity of WisconsinMilwaukeeUSA
  2. 2.Department of Computer ScienceUniversity of WisconsinMilwaukeeUSA

Personalised recommendations