Innovative On-line Handwriting Identification Algorithm Based on Stroke Features

  • Danilo Avola
  • Luigi Cinque
  • Stefano Levialdi
  • Andrea Petracca
  • Giuseppe Placidi
  • Matteo Spezialetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8641)


The handwriting analysis is a field of great interest since supports the study of different personal characteristics of the human beings, including identity, character, and neurological disabilities. In particular, the handwriting identification area, which also includes the handwritten signature verification, is a topic continuously investigated since the freehand writing of a manuscript, as well as the appending of a personal signature on a paper document, are still the most widespread ways to certify documents in legal, financial and administrative fields. The rapid diffusion of devices that enable user interaction by means of freehand or capacity pen based writing, and the growing successes obtained in processing the digital handwriting, are allowing us to extend more and more the boundaries of this fascinating area. The automatic handwriting identification is an engaging matter that supports several application contexts including the personal identification. In this paper we present a novel on-line handwriting identification algorithm based on the computation of the static and dynamic features of the strokes composing an handwritten text. Extensive experiments have demonstrated the usefulness and the accuracy of the proposed method.


handwriting analysis handwriting identification handwritten signature verification feature extraction freehand drawing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seki, Y.: What kind of strategies does a document examiner take in handwriting identification? In: Sako, H., Franke, K.Y., Saitoh, S. (eds.) IWCF 2010. LNCS, vol. 6540, pp. 193–199. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Sukor, N., Muda, A., Muda, N., Huoy, C.: A comparative study of tree-based structure methods for handwriting identification. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). LNEE, vol. 285, pp. 269–276. Springer, Singapore (2014)CrossRefGoogle Scholar
  3. 3.
    Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Trans. Patt. Anal. Mach. Intell. 22(1), 63–84 (2000)CrossRefGoogle Scholar
  4. 4.
    Kalera, M.K., Srihari, S., Xu, A.: Off-line signature verification and identification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence, 228–232 (2003)Google Scholar
  5. 5.
    Schlapbach, A., Bunke, H.: Off-line handwriting identification using hmm based recognizers. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 654–658 (August 2004)Google Scholar
  6. 6.
    Jain, A.K., Griess, F.D., Connell, S.D.: On-line signature verification. Pattern Recognition 35 (2002)Google Scholar
  7. 7.
    Quan, Z.H., Huang, D.S., Liu, K.H., Chau, K.W.: A hybrid hmm/ann based approach for online signature verification. In: International Joint Conference on Neural Networks, IJCNN 2007, pp. 402–405 (August 2007)Google Scholar
  8. 8.
    O’Reilly, C., Plamondon, R.: Development of a sigma-lognormal representation for on-line signatures. Pattern Recognition 42(12), 3324–3337 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 701–717 (2007)CrossRefGoogle Scholar
  10. 10.
    Tan, G.X., Viard-Gaudin, C., Kot, A.C.: Automatic writer identification framework for online handwritten documents using character prototypesGoogle Scholar
  11. 11.
    Harralson, H., Miller, L.: Developments in Handwriting and Signature Identification in the Digital Age. Forensic studies for criminal justice (2013)Google Scholar
  12. 12.
    Plamondon, R.: A kinematic theory of rapid human movements. Biological Cybernetics 72(4), 295–307 (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    O’Reilly, C., Plamondon, R.: Looking for the brain stroke signature. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1811–1814 (November 2012)Google Scholar
  14. 14.
    Impedovo, D., Pirlo, G., Plamondon, R.: Handwritten signature verification: New advancements and open issues. In: ICFHR, pp. 367–372 (2012)Google Scholar
  15. 15.
    Plamondon, R., O’Reilly, C., Galbally, J., Almaksour, A., Anquetil, É.: Recent developments in the study of rapid human movements with the kinematic theory: Applications to handwriting and signature synthesis. Pattern Recognition Letters 35, 225–235 (2014)CrossRefGoogle Scholar
  16. 16.
    Avola, D., Del Buono, A., Del Nostro, P., Wang, R.: A novel online textual/Graphical domain separation approach for sketch-based interfaces. In: Damiani, E., Jeong, J., Howlett, R.J., Jain, L.C. (eds.) New Directions in Intelligent Interactive Multimedia Systems and Services - 2. SCI, vol. 226, pp. 167–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Avola, D., Cinque, L., Placidi, G.: Sketchspore: A sketch based domain separation and recognition system for interactive interfaces. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 181–190. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Avola, D., Del Buono, A., Gianforme, G., Paolozzi, S., Wang, R.: Sketchml a representation language for novel sketch recognition approach. In: Proceedings of the 2nd International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2009, pp. 31:1–31:8. ACM, New York (2009)Google Scholar
  19. 19.
    Avola, D., Del Buono, A., Gianforme, G., Paolozzi, S.: A novel recognition approach for sketch-based interfaces. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 1015–1024. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Avola, D., Ferri, F., Grifoni, P.: Formalizing recognition of sketching styles in human centered systems. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 369–376. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Fonseca, M.J., Jorge, J.A.: Experimental evaluation of an on-line scribble recognizer. Pattern Recognition Letters 22(12), 1311–1319 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Fonseca, M.J., Ferreira, A., Jorge, J.A.: Content-based retrieval of technical drawings. IJCAT 23(2-4), 86–100 (2005)CrossRefGoogle Scholar
  23. 23.
    Tirkaz, C., Yanikoglu, B.A., Sezgin, T.M.: Sketched symbol recognition with auto-completion. Pattern Recognition 45(11), 3926–3937 (2012)CrossRefGoogle Scholar
  24. 24.
    Alvarado, C., Davis, R.: Sketchread: A multi-domain sketch recognition engine. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, UIST 2004, pp. 23–32. ACM, New York (2004)Google Scholar
  25. 25.
    Hammond, T., Davis, R.: Ladder: A language to describe drawing, display, and editing in sketch recognition. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 461–467. Morgan Kaufmann (2003)Google Scholar
  26. 26.
    Brieler, F., Minas, M.: A model-based recognition engine for sketched diagrams. J. Vis. Lang. Comput. 21(2), 81–97 (2010)CrossRefGoogle Scholar
  27. 27.
    Avola, D., Bottoni, P., Dafinei, A., Labella, A.: Fcbd: An agent-based architecture to support sketch recognition interfaces. In: DMS, Know. Sys. Ins., pp. 295–300 (2011)Google Scholar
  28. 28.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Danilo Avola
    • 1
  • Luigi Cinque
    • 2
  • Stefano Levialdi
    • 2
  • Andrea Petracca
    • 1
  • Giuseppe Placidi
    • 1
  • Matteo Spezialetti
    • 1
  1. 1.Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Computer ScienceSapienza UniversityRomeItaly

Personalised recommendations