Advertisement

Abstract

Face detection has been considered one of the most important areas of research in computer vision due to its wide range of use in human face-related applications. This paper addresses the problem of face detection using Hough transform employed within the random forests framework. The proposed Hough forests-based method is a task-adapted codebooks of local facial appearance with a randomized selection of features at each split that allow fast supervised training and fast matching at test time, where the codebooks are built upon a pool of heterogeneous local appearance features and the codebook is learned for the face appearance features that models the spatial distribution and appearance of facial parts of the human face. Experimental results are included to verify the effectiveness and feasibility of the proposed method.

Keywords

Random Forest Gaussian Mixture Model Face Detection Probabilistic Vote Binary Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hassaballah, M., Murakami, K., Ido, S.: Face detection evaluation: A new approach based on the golden ratio Φ. Signal, Image and Video Processing (SIViP) Journal 7(2), 307–316 (2013)CrossRefGoogle Scholar
  2. 2.
    Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar
  3. 3.
    Tsao, W.-K., Lee, A.J.T., Liu, Y.-H., Chang, T.-W., Lin, H.-H.: A data mining approach to face detection. Pattern Recognition 43(3), 1039–1049 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision 7(2-3), 81–227 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Barrett, J., Cairns, D.: Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls. Statistical Applications in Genetics and Molecular Biology 7(2), 1544–6115 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Moosmann, F., Nowak, E., Jurie, F.: Randomized clustering forests for image classification. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(9), 1632–1646 (2008)CrossRefGoogle Scholar
  8. 8.
    Chen, X., Ishwaran, H.: Random forests for genomic data analysis. Genomics 99(6), 323–329 (2012)CrossRefGoogle Scholar
  9. 9.
    Gall, J., Lempitsky, V.: Class-specific Hough forests for object detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1022–1029 (2009)Google Scholar
  10. 10.
    Gall, J., Yao, A., Razavi, N., Gool, L.-V., Lempitsky, V.: Hough forests for object detection, tracking, and action Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 33(11), 2188–2202 (2011)CrossRefGoogle Scholar
  11. 11.
    Barinova, O., Lempitsky, V., Kohli, P.: On detection of multiple object instances using Hough transforms. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(9), 1773–1784 (2012)CrossRefGoogle Scholar
  12. 12.
    Hjelmas, E., Low, B.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Tabatabaie, Z., Rahmat, R., Udzir, N.B., Kheirkhah, E.: A hybrid face detection system using combination of appearance-based and feature-based methods. International Journal of Computer Science and Network Security 9(5), 181–185 (2009)Google Scholar
  14. 14.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  15. 15.
    Brubaker, S.C., Wu, J., Sun, J., Mullin, M., Rehg, J.: On the design of cascades of boosted ensembles for face detection. International Journal of Computer Vision 77(1-3), 65–86 (2008)CrossRefGoogle Scholar
  16. 16.
    Xiaohua, L., Lam, K.-M., Lansun, S., Jiliu, Z.: Face detection using simplified Gabor features and hierarchical regions in a cascade of classifiers. Pattern Recognition Letters 30(8), 717–728 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, S., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  18. 18.
    Chen, J.-C., James Lien, J.-J.: A view-based statistical system for multi-view face detection and pose estimation. Image and Vision Computing 27(9), 1252–1271 (2009)CrossRefGoogle Scholar
  19. 19.
    Yang, M., Crenshaw, J., Augustine, B., Mareachen, R., Wu, Y.: Adaboost based face detection for embedded systems. Computer Vision and Image Understanding 114(11), 1116–1125 (2010)CrossRefGoogle Scholar
  20. 20.
    Hamouz, M., Kittler, J., Kamarainen, J.-K., Paalanen, P., Kälviäinen, H., Matas, J.: Feature-based affine-invariant localization of faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(9), 1490–1495 (2005)CrossRefGoogle Scholar
  21. 21.
    Parzen, E.: On estimation of a probability density function and mode. Annals of Math. Statistics 33(3), 1065–1076 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 886–893 (2005)Google Scholar
  23. 23.
    Schneiderman, H., Kanade, T.: A statistical method for 3D object detection applied to faces and cars. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 741–751 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Hassaballah
    • 1
  • Mourad Ahmed
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceSouth Valley UniversityQenaEgypt

Personalised recommendations