Skip to main content

Modelling of Bioimpedance Measurements: Application to Sensitivity Analysis

  • Conference paper
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2014)

Abstract

A technology for high-resolution efficient numerical modeling of bioimpedance measurements is considered that includes 3D image segmentation, adaptive unstructured tetrahedral mesh generation, finite-element discretization, and the analysis of simulation data. The first-order convergence of the proposed numerical methods on a series of unmatched meshes and roughly second order convergence on a series of nested meshes are shown. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, L., van Riesen, D., Leonhardt, S.: Optimal electrode placement and frequency range selection for the detection of lung water using bioimpedance spectroscopy. In: Proc. 29th Annual Int. Conf. of the IEEE, August 22–26, pp. 2685–2688 (2007)

    Google Scholar 

  2. Caon, M.: Voxel-based computational models of real human anatomy: a review. Radiat. Environ. Biophys. 42(4), 229–235 (2004)

    Article  Google Scholar 

  3. Cherepenin, V., Karpov, A., Korjenevsky, A., et al.: Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans. Med. Imaging 21(6), 662–667 (2002)

    Article  Google Scholar 

  4. Cybulski, G.: Ambulatory impedance cardiography. Springer, Heidelberg (2011)

    Book  Google Scholar 

  5. Gabriel, C., Peyman, A., Grant, E.: Electrical conductivity of tissues at frequencies below 1 MHz. Phys. Med. Biol. 54(16), 4863–4878 (2009)

    Article  Google Scholar 

  6. Geselowitz, D.B.: An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 18(1), 38–41 (1971)

    Article  Google Scholar 

  7. Grimnes, S., Martinsen, O.G.: Bioimpedance and bioelectricity basics. Elsevier, Amsterdam (2008)

    Google Scholar 

  8. Hoffer, E.C., Meador, C.K., Simpson, D.C.: Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 27(4), 531–534 (1969)

    Google Scholar 

  9. Höhne, K.H., Pflesser, B., Pommert, A., et al.: A realistic model of human structure from the Visible Human data. Meth. Inform. Med. 40(2), 83–89 (2001)

    Google Scholar 

  10. Holder, D.S.: Electrical impedance tomography. Institute of Physics Publishers, Bristol (2005)

    Google Scholar 

  11. Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its u t u + u t r + r t u-decomposition. Numer. Linear Algebra Appl. 5(6), 483–509 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kauppinen, P.K., Hyttinen, J.A., Malmivuo, J.A.: Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann. Biomed. Eng. 26(4), 694–702 (1998)

    Article  Google Scholar 

  13. Kushner, R.F., Schoeller, D.A.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr. 44(3), 417–424 (1986)

    Google Scholar 

  14. Lukaski, H.C., Johnson, P.E., Bolonchuk, W.W., Lykken, G.I.: Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 41(4), 810–817 (1985)

    Google Scholar 

  15. Rineau, L., Yvinec, M.: A generic software design for Delaunay refinement meshing. Comp. Geom. Theory Appl. 38(1-2), 100–110 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vassilevski Yu, V., Danilov, A.A., Nikolaev, D.V., et al.: Finite-element analysis of bioimpedance measurements. Zh. Vych. Mat. Matem. Fiz. 52(4), 733–745 (2012) (in Russian)

    Google Scholar 

  17. The Visible Human Project, http://www.nlm.nih.gov/research/visible/

  18. Xu, X.G., Eckerman, K.F.: Handbook of anatomical models for radiation dosimetry. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  19. Yang, F., Patterson, R.P.: A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions. Ann. Biomed. Eng. 36(5), 762–768 (2008)

    Article  Google Scholar 

  20. Yushkevich, P.A., Piven, J., Hazlett, H.C., et al.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  21. 3D generator of anisotropic meshes, http://sourceforge.net/projects/ani3d

  22. Danilov, A.A., Kramarenko, V.K., Nikolaev, D.V., Rudnev, S.G., Salamatova, V.Yu., Smirnov, A.V., Vassilevski, Yu.V.: Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. 434, 012001 (2013), doi:10.1088/1742-6596/434/1/012001

    Google Scholar 

  23. Danilov, A.A., Kramarenko, V.K., Nikolaev, D.V., Yurova, A.S.: Personalized model adaptation for bioimpedance measurements optimization // Russ. J. Numer. Anal. Math. Modelling 28(5), 459–470 (2013)

    MATH  Google Scholar 

  24. Danilov, A.A., Nikolaev, D.V., Rudnev, S.G., Salamatova, V.Yu., Vassilevski, Yu.V.: Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. Russ. J. Numer. Anal. Math. Modelling 27(5), 431–440 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Danilov, A.A., Kramarenko, V.K., Yurova, A.S. (2014). Modelling of Bioimpedance Measurements: Application to Sensitivity Analysis. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics