Advertisement

Modelling of Bioimpedance Measurements: Application to Sensitivity Analysis

  • Alexander A. Danilov
  • Vasily K. Kramarenko
  • Alexandra S. Yurova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8641)

Abstract

A technology for high-resolution efficient numerical modeling of bioimpedance measurements is considered that includes 3D image segmentation, adaptive unstructured tetrahedral mesh generation, finite-element discretization, and the analysis of simulation data. The first-order convergence of the proposed numerical methods on a series of unmatched meshes and roughly second order convergence on a series of nested meshes are shown. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained.

Keywords

bioelectrical impedance analysis FEM sensitivity analysis mesh generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckmann, L., van Riesen, D., Leonhardt, S.: Optimal electrode placement and frequency range selection for the detection of lung water using bioimpedance spectroscopy. In: Proc. 29th Annual Int. Conf. of the IEEE, August 22–26, pp. 2685–2688 (2007)Google Scholar
  2. 2.
    Caon, M.: Voxel-based computational models of real human anatomy: a review. Radiat. Environ. Biophys. 42(4), 229–235 (2004)CrossRefGoogle Scholar
  3. 3.
    Cherepenin, V., Karpov, A., Korjenevsky, A., et al.: Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans. Med. Imaging 21(6), 662–667 (2002)CrossRefGoogle Scholar
  4. 4.
    Cybulski, G.: Ambulatory impedance cardiography. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Gabriel, C., Peyman, A., Grant, E.: Electrical conductivity of tissues at frequencies below 1 MHz. Phys. Med. Biol. 54(16), 4863–4878 (2009)CrossRefGoogle Scholar
  6. 6.
    Geselowitz, D.B.: An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 18(1), 38–41 (1971)CrossRefGoogle Scholar
  7. 7.
    Grimnes, S., Martinsen, O.G.: Bioimpedance and bioelectricity basics. Elsevier, Amsterdam (2008)Google Scholar
  8. 8.
    Hoffer, E.C., Meador, C.K., Simpson, D.C.: Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 27(4), 531–534 (1969)Google Scholar
  9. 9.
    Höhne, K.H., Pflesser, B., Pommert, A., et al.: A realistic model of human structure from the Visible Human data. Meth. Inform. Med. 40(2), 83–89 (2001)Google Scholar
  10. 10.
    Holder, D.S.: Electrical impedance tomography. Institute of Physics Publishers, Bristol (2005)Google Scholar
  11. 11.
    Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its u t u + u t r + r t u-decomposition. Numer. Linear Algebra Appl. 5(6), 483–509 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kauppinen, P.K., Hyttinen, J.A., Malmivuo, J.A.: Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann. Biomed. Eng. 26(4), 694–702 (1998)CrossRefGoogle Scholar
  13. 13.
    Kushner, R.F., Schoeller, D.A.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr. 44(3), 417–424 (1986)Google Scholar
  14. 14.
    Lukaski, H.C., Johnson, P.E., Bolonchuk, W.W., Lykken, G.I.: Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 41(4), 810–817 (1985)Google Scholar
  15. 15.
    Rineau, L., Yvinec, M.: A generic software design for Delaunay refinement meshing. Comp. Geom. Theory Appl. 38(1-2), 100–110 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Vassilevski Yu, V., Danilov, A.A., Nikolaev, D.V., et al.: Finite-element analysis of bioimpedance measurements. Zh. Vych. Mat. Matem. Fiz. 52(4), 733–745 (2012) (in Russian)Google Scholar
  17. 17.
    The Visible Human Project, http://www.nlm.nih.gov/research/visible/
  18. 18.
    Xu, X.G., Eckerman, K.F.: Handbook of anatomical models for radiation dosimetry. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  19. 19.
    Yang, F., Patterson, R.P.: A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions. Ann. Biomed. Eng. 36(5), 762–768 (2008)CrossRefGoogle Scholar
  20. 20.
    Yushkevich, P.A., Piven, J., Hazlett, H.C., et al.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar
  21. 21.
    3D generator of anisotropic meshes, http://sourceforge.net/projects/ani3d
  22. 22.
    Danilov, A.A., Kramarenko, V.K., Nikolaev, D.V., Rudnev, S.G., Salamatova, V.Yu., Smirnov, A.V., Vassilevski, Yu.V.: Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. 434, 012001 (2013), doi:10.1088/1742-6596/434/1/012001Google Scholar
  23. 23.
    Danilov, A.A., Kramarenko, V.K., Nikolaev, D.V., Yurova, A.S.: Personalized model adaptation for bioimpedance measurements optimization // Russ. J. Numer. Anal. Math. Modelling 28(5), 459–470 (2013)zbMATHGoogle Scholar
  24. 24.
    Danilov, A.A., Nikolaev, D.V., Rudnev, S.G., Salamatova, V.Yu., Vassilevski, Yu.V.: Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. Russ. J. Numer. Anal. Math. Modelling 27(5), 431–440 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander A. Danilov
    • 1
  • Vasily K. Kramarenko
    • 2
  • Alexandra S. Yurova
    • 3
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Department of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations