Advertisement

Element Stiffness Matrix Integration in Image-Based Cartesian Grid Finite Element Method

  • Luca Giovannelli
  • Juan J. Ródenas
  • José M. Navarro-Jimenez
  • Manuel Tur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8641)

Abstract

Patient specific Finite Element (FE) simulations are usually expensive. Time consuming geometry creation procedures are normally necessary to use standard FE meshing software, while direct pixel-based meshing techniques typically lead to a large number of degrees of freedom hence introducing a high computational cost. Image-based Cartesian grid Finite Element Method (image-based cgFEM) allows accurate models to be automatically obtained with a low computational cost without the necessity of defining geometries. In cgFEM the image is directly immersed into a Cartesian mesh which is h-adapted on the basis of the pixel value distribution. A hierarchical structure of nested Cartesian grids guarantees the efficiency of the process. In each element, the material elastic properties are heterogeneous, therefore a critical aspect of image-based cgFEM is the integration of the element stiffness matrices which homogenize the material elastic behavior at the element level. This paper compares accuracy and computational cost of different integration strategies: pixel direct integration schemes (Riemann sum and subdomain Gauss quadrature) and recovery based schemes (Least Squares fitting and Superconvergent Patch Recovery).

Keywords

Cartesian grid Finite Element Medical Simulation Patient Specific Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neal, M.L., Kerckhoffs, R.: Current progress in patient-specific modeling. Briefings in Bioinformatics 11(1), 111–126 (2010)CrossRefGoogle Scholar
  2. 2.
    Grassi, L., Schileo, E., Taddei, F., Zani, L., Juszczyk, M., Cristofolini, L.: Accuracy of finite element predictions in sideways load configurations for the proximal human femur. Journal of Biomechanics 45(2), 394–399 (2012)CrossRefGoogle Scholar
  3. 3.
    Viceconti, M., Lattanzi, R., Antonietti, B., Paderni, S., Olmi, R., Sudanese, A., Toni, A.: CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning. Medical Engineering & Physics 25(5), 371–377 (2003)CrossRefGoogle Scholar
  4. 4.
    Bongini, D., Carfagni, M., Governi, L.: Hippin: a semiautomatic computer program for selecting hip prosthesis femoral components. Computer Methods and Programs in Biomedicine 63(2), 105–115 (2000)CrossRefGoogle Scholar
  5. 5.
    Alberich-Bayarri, A., Marti-Bonmati, L., Sanz-Requena, R., Belloch, E., Moratal, D.: In vivo trabecular bone morphologic and mechanical relationship using high-resolution 3-T MRI. American Journal of Roentgenology, AJR 191(3), 721–726 (2008)CrossRefGoogle Scholar
  6. 6.
    García-Aznar, J.M., Bayod, J., Rosas, A., Larrainzar, R., García-Bógalo, R., Doblaré, M., Llanos, L.F.: Load transfer mechanism for different metatarsal geometries: A finite element study. Journal of Biomechanical Engineering 131(2) (2009)Google Scholar
  7. 7.
    Viceconti, M.: A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering and Physics 20, 1–10 (1998); Medical Engineering and Physics 22(5), 379–380 (2000)Google Scholar
  8. 8.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA, 1st edn. Wiley (2009)Google Scholar
  9. 9.
    Lian, W.D., Legrain, G., Cartraud, P.: Image-based computational homogenization and localization: Comparison between X-FEM/levelset and voxel-based approaches. Computational Mechanics 51(3), 279–293 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., Rank, E.: The finite cell method for bone simulations: verification and validation. Biomechanics and Modeling in Mechanobiology 11(3-4), 425–437 (2012)CrossRefGoogle Scholar
  11. 11.
    Giovannelli, L., Marco, O., Navarro, J.M., Giner, E., Ródenas, J.J.: Direct Creation of Finite Element Models from Medical Images using Cartesian Grids. In: Computational Vision and Medical Image Processing, IV ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, VipIMAGE (2013)Google Scholar
  12. 12.
    Nadal, E.: On the use of Cartesian Grid Finite Element codes in structural optimization (October 2012)Google Scholar
  13. 13.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique. International Journal for Numerical Methods in Engineering 33(7), 1331–1364 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Viceconti, M., Bellingeri, L., Cristofolini, L., Toni, A.: A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering & Physics 20(1), 1–10 (1998)CrossRefGoogle Scholar
  15. 15.
    Kim, H., Jürgens, P., Weber, S., Nolte, L.P., Reyes, M.: A new soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Progress in Biophysics and Molecular Biology 103(2-3), 284–291 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luca Giovannelli
    • 1
  • Juan J. Ródenas
    • 1
  • José M. Navarro-Jimenez
    • 1
  • Manuel Tur
    • 1
  1. 1.Centro de Investigación en Ingeniería Mecánica - CIIMUniversitat Politècnica de ValènciaSpain

Personalised recommendations