Skip to main content

Adaptive Sampling and Non Linear Reconstruction for Cardiac Magnetic Resonance Imaging

  • Conference paper
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2014)

Abstract

We show how an adaptive acquisition sequence and a non linear reconstruction can be efficiently used to reconstruct undersampled cardiac MRI data. We demonstrate that, by using the adaptive method and L 0-homotopic minimization, we can reconstruct an image with a number of samples which is very close to the sparsity coefficient of the image without knowing a-priori the sparsity of the image. We highlight two important aspects: 1) how the shape and the cardinality of the starting dataset influence the acquisition/reconstruction process; 2) how well the termination criteria allows to fit the optimal number of coefficients. The method is tested on MRI cardiac images and it is also compared to the weighted Compressed Sensing. All the experiments and results are reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’sullivan, J.: A fast sinc function gridding algorithm for fourier inversion in computer tomography. IEEE Transactions on Medical Imaging 4(4), 200–207 (1985)

    Article  Google Scholar 

  2. Placidi, G., Alecci, M., Sotgiu, A.: ω-space adaptive acquisition technique for magnetic resonance imaging from projections. Journal of Magnetic Resonance 143(1), 197–207 (2000)

    Article  Google Scholar 

  3. Placidi, G., Alecci, M., Sotgiu, A.: Theory of adaptive acquisition method for image reconstruction from projections and application to epr imaging. Journal of Magnetic Resonance, Series A 108(1), 50–57 (1995)

    Article  Google Scholar 

  4. Placidi, G.: MRI: essentials for innovative technologies. CRC Press (2012)

    Google Scholar 

  5. Placidi, G., Alecci, M., Colacicchi, S., Sotgiu, A.: Fourier reconstruction as a valid alternative to filtered back projection in iterative applications: implementation of fourier spectral spatial epr imaging. Journal of Magnetic Resonance 134(2), 280–286 (1998)

    Article  Google Scholar 

  6. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  7. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  9. Elad, M.: Sparse and redundant representations: from theory to applications in signal and image processing. Springer (2010)

    Google Scholar 

  10. Usman, M., Prieto, C., Schaeffter, T., Batchelor, P.: k-t group sparse: A method for accelerating dynamic mri. Magnetic Resonance in Medicine 66(4), 1163–1176 (2011)

    Article  Google Scholar 

  11. Trzasko, J.D., Manduca, A.: A fixed point method for homotopic l0-minimization with application to mr image recovery. In: Medical Imaging, International Society for Optics and Photonics, pp. 69130F–69130F (2008)

    Google Scholar 

  12. Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via homotopic-minimization. IEEE Transactions on Medical imaging 28(1), 106–121 (2009)

    Article  Google Scholar 

  13. Lustig, M.: Sparse MRI. ProQuest (2008)

    Google Scholar 

  14. Wang, Z., Arce, G.R.: Variable density compressed image sampling. IEEE Transactions on Image Processing 19(1), 264–270 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ciancarella, L., Avola, D., Placidi, G.: Adaptive sampling and reconstruction for sparse magnetic resonance imaging. In: Computational Modeling of Objects Presented in Images, pp. 115–130. Springer (2014)

    Google Scholar 

  16. Ciancarella, L., Avola, D., Marcucci, E., Placidi, G.: A hybrid sampling strategy for sparse magnetic resonance imaging. Computational Modelling of Objects Represented in Images III: Fundamentals, Methods and Applications, 285 (2012)

    Google Scholar 

  17. Pipe, J.G., et al.: Motion correction with propeller mri: application to head motion and free-breathing cardiac imaging. Magnetic Resonance in Medicine 42(5), 963–969 (1999)

    Article  Google Scholar 

  18. Arfanakis, K., Tamhane, A.A., Pipe, J.G., Anastasio, M.A.: k-space undersampling in propeller imaging. Magnetic Resonance in Medicine 53(3), 675–683 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Placidi, G., Avola, D., Cinque, L., Macchiarelli, G., Petracca, A., Spezialetti, M. (2014). Adaptive Sampling and Non Linear Reconstruction for Cardiac Magnetic Resonance Imaging. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics