Detection of Myocardial Perfusion Defects Using First Pass Perfusion Cardiac MRI Data

  • Stephen Kruzick
  • Ole Mengshoel
  • Prahlad G. Menon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8641)


First pass perfusion cardiac magnetic resonance imaging (FPP-CMR) presents a non-invasive method of detecting restricted blood flow to the myocardium, heart muscle tissue, early in development of coronary heart disease. This paper proposes simple classification methods applied to FPP-CMR data to detect regions of poor perfusion. Preliminary results show correspondence to regions of scar tissue detected from thresholding of late Gadolinium enhancement CMR imaging.


cardiac magnetic resonance imaging coronary heart disease classification Dice index Gaussian naive Bayes myocardium perfusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patel, M., et al.: Low Diagnostic Yield of Elective Coronary Angiography. New England Journal of Medicine (March 2010)Google Scholar
  2. 2.
    Heiberg, E., et al.: Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med. Imaging 10(1) (January 11, 2010), doi:10.1186/1471-2342-10-1. NOTE: Analysis was performed using Segment version 1.9 R2046 (
  3. 3.
    Gebker, R., Schwitter, J., Fleck, E., Nagel, E.: How We Perform Myocardial Perfusion With Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance (2007)Google Scholar
  4. 4.
    Kim, R., Shah, D., Judd, R.: How We Perform Delay Enhancement Imaging. Journal of Cardiovascular Magnetic Resonance (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stephen Kruzick
    • 1
  • Ole Mengshoel
    • 2
  • Prahlad G. Menon
    • 3
    • 4
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.CMU Silicon ValleyMountain ViewUSA
  3. 3.SYSU-CMU Joint Institute of EngineeringPittsburghUSA
  4. 4.SYSU-CMU Shunde International Joint Research InstituteGuangdongChina

Personalised recommendations