Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8641))

Abstract

In the current paper, we present a series of algorithms to generate high quality, feature-sensitive, and adaptive meshes from a given grayscale image. The Canny’s edge detector is employed to guarantee that important image features are preserved in the meshes. A halftoning-based sampling strategy is adopted to provide feature-sensitive and adaptive point distributions in the image domain. A Delaunay-triangulation is used to generate initial triangulation of the image, followed by iterative mesh smoothing for mesh quality improvement. Experimental results on several medical images have shown that the proposed method is effective in producing adaptive meshes with high-quality and well-preserved features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haidekker, M.A.: Medical Imaging Technology, Springer Briefs in Physics (2013)

    Google Scholar 

  2. Chandler, D., Roberson, R.W.: Bioimaging: Current Concept in Light & Electron Microscopy. Jones & Bartlett Learning (2008)

    Google Scholar 

  3. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial gray scale. In: SID Int. Symp. Digest of Tech. Papers, pp. 36–37 (1975)

    Google Scholar 

  4. Shewchuk, J.: Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator, http://www.cs.cmu.edu/~quake/triangle.html

  5. Ramponi, G., Carrato, S.: An adaptive irregular sampling algorithm and its application to image coding. Image and Vision Computing 19(7), 451–460 (2001)

    Article  Google Scholar 

  6. Yang, Y., Wernick, M.N., Brankov, J.G.: A fast approach for accurate content-adaptive mesh generation. IEEE Transactions on Image Processing 12(8), 866–881 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kim, T.-S., Lee, W.H.: 3-D MRI and DT-MRI Content-adaptive Finite Element Head Model Generation for Bioelectromagnetic Imaging. In: Recent Advances in Biomedical Engineering (2009)

    Google Scholar 

  8. Cuadros-Vargas, A.J., Nonato, L.G., Minghim, R., Etiene, T.: Imesh: An Image Based Quality Mesh Generation Technique. In: Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing (2005)

    Google Scholar 

  9. Tu, X., Adams, M.D.: Improved Mesh Models of Images Through the Explicit Representation of Discontinuities. Canadian Journal of Electrical and Computer Engineering 36(2), 78–86 (2013)

    Article  Google Scholar 

  10. Garland, M., Heckbert, P.S.: Fast Polygonal Approximation of Terrains and Height Fields. CMU-CS-95-181 (1995)

    Google Scholar 

  11. Adams, M.D.: A Highly-Effective Incremental/Decremental Delaunay Mesh-Generation Strategy for Image Representation. Signal Processing 93(4), 749–764 (2013)

    Article  Google Scholar 

  12. Sarkis, M., Diepold, K.: Content Adaptive Mesh Representation of Images Using Binary Space Partitions. IEEE Trans. Image Process. 18(5), 1069–1079 (2009)

    Article  MathSciNet  Google Scholar 

  13. Bougleux, S., Peyré, G., Cohen, L.D.: Image Compression with Anisotropic Geodesic Triangulations. In: IEEE 12th International Conference Computer Vision, pp. 2343–2348 (2009)

    Google Scholar 

  14. Li, P., Adams, M.D.: A Tuned Mesh-Generation Strategy for Image Representation Based on Data-Dependent Triangulation. IEEE Trans. Image Process. 22(5), 2004–2018 (2013)

    Article  MathSciNet  Google Scholar 

  15. Demaret, L., Dyn, N., Iske, A.: Image Compression by Linear Splines over Adaptive Triangulations. Signal Processing 86(7), 1604–1616 (2006)

    Article  MATH  Google Scholar 

  16. Demaret, L., Iske, A.: Anisotropic Triangulation Methods in Adaptive Image Approximation. In: Approximation Algorithms for Complex Systems. Springer Proceedings in Mathematics, vol. 3, pp. 47–68 (2011)

    Google Scholar 

  17. Adams, M.D.: A Flexible Content-Adaptive Mesh-Generation Strategy for Image Representation. IEEE Transactions on Image Processing 20(9), 2414–2427 (2011)

    Article  MathSciNet  Google Scholar 

  18. Chen, L.: Mesh smoothing schemes based on optimal Delaunay triangulations. In: Proceedings of the 13th International Meshing Roundtable, pp. 109–120 (2004)

    Google Scholar 

  19. Chen, L., Xu, J.: Optimal Delaunay triangulation. Journal of Computational Mathematics 22(2), 299–308 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Gao, Z., Yu, Z., Holst, M.: Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation. Computer Aided Geometric Design 29(9), 707–721 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gao, Z., Yu, Z., Holst, M.: Feature-Preserving Surface Mesh Smoothing via Suboptimal Delaunay Triangulation. Graphical Models 75(1), 23–38 (2013)

    Article  Google Scholar 

  22. Goksel, O., Salcudean, S.E.: Image-Based Variational Meshing. IEEE Transactions on Medical Imaging 30(1), 11–21 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, M., Gao, Z., Yu, Z. (2014). Feature-Sensitive and Adaptive Mesh Generation of Grayscale Images. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics