Skip to main content

Passive Brain-Computer Interfaces for Robot-Assisted Rehabilitation

  • Chapter
  • First Online:
Brain-Computer Interface Research

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1388 Accesses

Abstract

Stroke patients must exercise intensely with rehabilitation robots to achieve satisfactory rehabilitation outcome, but ensuring appropriate exercise difficulty is a challenging task. Brain-computer interfaces would be suitable for such difficulty adaptations since they capture both conscious and subconscious aspects of workload, but have seen little use in rehabilitation. This chapter reviews previous work on passive brain–computer interfaces and highlights the practical challenges of applying the technology to motor rehabilitation. Preliminary results of a study on workload estimation in a rehabilitation robot with healthy subjects are then presented. Adaptive stepwise regression is used to estimate different types of workload from electroencephalography signals recorded at different sites. Results show that electroencephalography can achieve more accurate workload estimation than autonomic nervous system responses and that adaptive estimation methods can further improve accuracy. However, the number of electrode sites needs to be reduced and issues such as motion artefacts must be resolved before passive brain-computer interfaces can be used in motor rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonenko P, Paas F, Grabner R, Gog T (2010) Using electroencephalography to measure cognitive load. Educational Psychol Rev 22(4):425–438

    Article  Google Scholar 

  • Ayaz H, Shewokis PA, Bunce S, Izzetoglu K, Willems B, Onaral B (2012) Optical brain monitoring for operator training and mental workload assessment. NeuroImage 59(1):36–47

    Google Scholar 

  • Badesa F, Morales R, Garcıa-Aracil N, Sabater J, Perez-Vidal C, Fernandez E (2012) Multimodal interfaces to improve therapeutic outcomes in robot-assisted rehabilitation. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1152–1158

    Article  Google Scholar 

  • Berka C, Levendowski D, Cvetinovic M, Petrovic M, Davis G, Lumicao M et al (2004) Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int J Hum Comput Interact 17(2):151–170

    Google Scholar 

  • Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Craven PL (2007) EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med 78(5 Suppl):B231–B244

    Google Scholar 

  • Brainin M, Borstein N, Boysen G, Demarin V (2000) Acute neurological stroke care in Europe: results of the European stroke care inventory. Eur J Neurol 7:5–10

    Article  Google Scholar 

  • Brouwer A-M, Hogervorst M, Van Erp JBF, Heffelaar T, Zimmerman PH, Oostenveld R (2012) Estimating workload using EEG spectral power and ERPs in the n-back task. J Neural Eng 9(4):045008

    Google Scholar 

  • BĂĽtefisch C, Hummelsheim H, Denzler P, Mauritz K (1995) Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 130:59–68

    Article  Google Scholar 

  • CameirĂŁo MS, Badia SBI, Oller ED, Verschure PFMJ (2010) Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil 7:48

    Google Scholar 

  • Chanel G, Rebetez C, BĂ©trancourt M, Pun T (2011) Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans Syst Man Cybern Part A Syst Hum 41(6):1052–1063

    Google Scholar 

  • Chi YM, Wang Y-T, Wang Y, Maier C, Jung T-P, Cauwenberghs G (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20(2):228–235

    Article  Google Scholar 

  • Coffey EBJ, Brouwer A-M, van Erp JBF (2012) Measuring workload using a combination of electroencephalography and near infrared spectroscopy. In: Proceedings of the human factors and ergonomics society 56th annual meeting, vol 56(1), pp 1822–1826

    Google Scholar 

  • Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC et al (2007) Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil 4:3

    Google Scholar 

  • Coyle S, Ward T, Markham C (2004) Physiological noise in near-infrared spectroscopy: implications for optical brain computer interfacing. In Proceedings of the 26th annual international conference of the IEEE engineering in medicine and biology society, pp 4540–4543

    Google Scholar 

  • Croft RJ, Barry RJ (2000) Removal of ocular artifact from the EEG: a review. Clin Neurophysiol 30(1):5–19

    Article  Google Scholar 

  • Fairclough SH, Venables L (2006) Prediction of subjective states from psychophysiology: a multivariate approach. Biol Psychol 71(1):100–110

    Article  Google Scholar 

  • Gagnon L, Cooper RJ, YĂĽcel MA, Perdue KL, Greve DN, Boas DA (2012) Short separation channel location impacts the performance of short channel regression in NIRS. NeuroImage 59(3):2518–2528

    Article  Google Scholar 

  • George L, Marchal M, Glondu L, Lecuyer A (2012) Combining brain-computer interfaces and haptics : detecting mental workload to adapt haptic assistance. In: Proceedings of EuroHaptics 2012, pp 124–135

    Google Scholar 

  • Girouard A, Solovey E, Hirshfield L (2009) Distinguishing difficulty levels with non-invasive brain activity measurements. In: Proceedings of INTERACT 2009, pp 440–452

    Google Scholar 

  • Goljahani A, D’Avanzo C, Schiff S, Amodio P, Bisiacchi P, Sparacino G (2012) A novel method for the determination of the EEG individual alpha frequency. NeuroImage 60(1):774–786

    Article  Google Scholar 

  • Guerrero CR, Fraile Marinero JC, Turiel JP, Muñoz V (2013) Using “human state aware” robots to enhance physical human-robot interaction in a cooperative scenario. Comput Methods Programs Biomed 112(2):250–259

    Article  Google Scholar 

  • Guger C, Krausz G, Allison BZ, Edlinger G (2012) A comparison of dry and gel-based electrodes for P300 BCIs. Front Neurosci 6:60

    Google Scholar 

  • Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R (2011) A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput 49(10):1213–1223

    Article  Google Scholar 

  • Gwin JT, Gramann K, Makeig S, Ferris DP (2010) Removal of movement artifact from high-density EEG recorded during walking and running. J Neurophysiol 103(6):3526–3534

    Article  Google Scholar 

  • Hart S, Staveland LE (1988) Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Human mental workload. North Holland Press, Amsterdam

    Google Scholar 

  • Heger D, Putze F, Schultz T (2010) Online workload recognition from EEG data during cognitive tests and human-machine interaction. Lect Notes Comput Sci 6359:410–417

    Article  Google Scholar 

  • Herrmann CS, Munk MH, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8(8):347–355

    Article  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195

    Article  Google Scholar 

  • Knoll A, Wang Y, Chen F, Xu J, Ruiz N, Epps J, Zarjam P (2011) Measuring cognitive workload with low-cost electroencephalograph. In: Proceedings of INTERACT 2011, pp 568–571

    Google Scholar 

  • Koenig A, Novak D, Omlin X, Pulfer M, Perreault E, Zimmerli L, Riener R (2011) Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training. IEEE Trans Neural Syst Rehabil Eng 19(4):453–464

    Article  Google Scholar 

  • Kwakkel G, Kollen B, Wagenaar R (2002) Long term effects of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry 72:473–479

    Google Scholar 

  • Lotte F, Congedo M, LĂ©cuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4(2):R1–R13

    Article  Google Scholar 

  • Maclean N (2002) The concept of patient motivation: a qualitative analysis of stroke professionals’ attitudes. Stroke 33(2):444–448

    Article  Google Scholar 

  • Matthews F, Pearlmutter BA, Ward TE, Soraghan C, Markham C (2008) Hemodynamics for brain computer interfaces. IEEE Signal Process Mag 25(1):87–94

    Article  Google Scholar 

  • Mayaud L, Congedo M, Van Laghenhove A, Orlikowski D, Figère M, Azabou E, Cheliout-Heraut F (2013) A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. Neurophysiol Clin 43(4):217–227

    Article  Google Scholar 

  • Mihelj M, Novak D, Munih M (2009) Emotion-aware system for upper extremity rehabilitation. In: Proceedings of virtual rehabilitation 2009, pp 160–165

    Google Scholar 

  • Mihelj M, Novak D, Milavec M, Ziherl J, Olenšek A, Munih M (2012) Virtual rehabilitation environment using principles of intrinsic motivation and game design. Presence Teleoperators Virtual Environ 21(1):1–15

    Article  Google Scholar 

  • Missonnier P, Leonards U, Gold G, Palix J, Ibáñez V, Giannakopoulos P (2003) A new electrophysiological index for working memory load in humans. NeuroReport 14(11):1451–1455

    Article  Google Scholar 

  • Nef T, Guidali M, Riener R (2009) ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionic Biomech 6(2):127–142

    Article  Google Scholar 

  • Nelles G (2004) Cortical reorganization—effects of intensive therapy. Arch Phys Med Rehabil 22:239–244

    Google Scholar 

  • Novak D, Mihelj M, Ziherl J, Olenšek A, Munih M (2011a) Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. IEEE Trans Neural Syst Rehabil Eng 19(4):400–410

    Article  Google Scholar 

  • Novak D, Mihelj M, Munih M (2011b) Psychophysiological responses to different levels of cognitive and physical workload in haptic interaction. Robotica 29(03):367–374

    Article  Google Scholar 

  • Novak D, Mihelj M, Munih M (2012) A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interact Comput 24:154–172

    Article  Google Scholar 

  • Novak D, Ziherl J, Olenšek A, Milavec M, Podobnik J, Mihelj M, Munih M (2010) Psychophysiological responses to robotic rehabilitation tasks in stroke. IEEE Trans Neural Syst Rehabil Eng 18(4):351–361

    Article  Google Scholar 

  • Ong M, Russell PN, Helton WS (2013) Frontal cerebral oxygen response as an indicator of initial attention effort during perceptual learning. Exp Brain Res 229(4):571–578

    Article  Google Scholar 

  • Pesonen M, Björnberg CH, Hämäläinen H, Krause CM (2006) Brain oscillatory 1–30 Hz EEG ERD/ERS responses during the different stages of an auditory memory search task. Neurosci Lett 399(1–2):45–50

    Article  Google Scholar 

  • Ryu K, Myung R (2005) Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int J Ind Ergon 35(11):991–1009

    Article  Google Scholar 

  • Shirzad N, Van der Loos HFM (2013) Adaptation of task difficulty in rehabilitation exercises based on the user’s motor performance and physiological responses. In Proceedings of the 2013 IEEE international conference on rehabilitation robotics

    Google Scholar 

  • Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Birbaumer N (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 34(4):1416–1427

    Article  Google Scholar 

  • Solovey E, Girouard A (2009) Using fNIRS brain sensing in realistic HCI settings: experiments and guidelines. In: Proceedings of UIST 2009, pp 157–166

    Google Scholar 

  • Thorvaldsen P, Asplund K, Kuulasmaa K, Rajakangas AM, Schroll M (1995) Stroke incidence, case fatality, and mortality in the WHO MONICA project. Stroke 26(3):361-367

    Google Scholar 

  • Van Erp JBF, Lotte F, Tangermann M (2012) Brain-computer interfaces: beyond medical applications. IEEE Comput 41:26–34

    Article  Google Scholar 

  • Vaughan TM, Wolpaw JR, Donchin E (1996) EEG-based communication: prospects and problems. IEEE Trans Rehabil Eng 4(4):425–430

    Article  Google Scholar 

  • Venables L, Fairclough SH (2009) The influence of performance feedback on goal-setting and mental effort regulation. Motiv Emot 33(1):63–74

    Article  Google Scholar 

  • Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    Article  Google Scholar 

  • Whitham EM, Pope KJ, Fitzgibbon SP, Lewis T, Clark CR, Loveless S, Willoughby JO (2007) Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol 118(8):1877–1888

    Article  Google Scholar 

  • Wilson GF, Russell C (2003) Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum Factors 45(4):635–643

    Article  Google Scholar 

  • Wilson GF, Russell C (2007) Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Hum Factors 49(6):1005–1018

    Article  Google Scholar 

  • Wu D, Courtney CG, Lance BJ, Narayanan SS, Dawson ME, Oie KS, Parsons TD (2010) Optimal arousal identification and classification for affective computing using physiological signals: virtual reality Stroop task. IEEE Trans Affect Comput 1(2):109–118

    Article  Google Scholar 

  • Zander TO, Kothe C (2011) Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng 8(2):025005

    Article  Google Scholar 

  • Zhao C, Zheng C, Zhao M, Tu Y, Liu J (2011) Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic. Expert Syst Appl 38(3):1859–1865

    Article  Google Scholar 

  • Zimmerli L, Krewer C, Gassert R, MĂĽller F, Riener R, LĂĽnenburger L (2012) Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke. J Neuroeng Rehabil 9:6

    Google Scholar 

  • Zimmermann R, Marchal-Crespo L, Edelmann J, Lambercy O, Fluet M-C, Riener R et al (2013) Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study. J Neuroeng Rehabil 10:4

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation through the National Centre of Competence in Research Robotics and by the Clinical Research Priority Program “NeuroRehab” University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domen Novak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Novak, D., Beyeler, B., Omlin, X., Riener, R. (2014). Passive Brain-Computer Interfaces for Robot-Assisted Rehabilitation. In: Guger, C., Vaughan, T., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09979-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09979-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09978-1

  • Online ISBN: 978-3-319-09979-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics