Skip to main content

Molecular Mechanics/Coarse-Grained Models

  • Chapter
  • First Online:

Abstract

Molecular simulations have proved to be extremely successful in predicting structures and energetics of ligand binding to their target receptors. However standard approaches are challenged when one has to deal with homology models based on templates with low sequence identity. In an effort at facing this challenge we have developed a hybrid molecular mechanics/coarse-grained (MM/CG) simulations approach, aimed at connecting the disparate spatial and temporal scales relevant to complex biological processes. This approach concentrates the efforts in characterizing the binding cavity while renouncing to most of protein details which are likely to be predicted in a rather inaccurate way by bioinformatics techniques. Examples of application of this technique to GPCRs illustrate the power of this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Michel J (2014) Current and emerging opportunities for molecular simulations in structure-based drug design. Phys Chem Chem Phys 16:4465–4477

    Article  CAS  Google Scholar 

  2. Congreve M, Dias JM, Marshall FH (2014) Structure-based drug design for g protein-coupled receptors. Prog Med Chem 53:1–63

    Article  CAS  Google Scholar 

  3. Klebe G (2013) Protein modeling and structure-based drug design. In: Klebe G (ed) Drug design. Springer, Berlin, pp 429–448

    Chapter  Google Scholar 

  4. Rastelli G (2013) Emerging topics in structure-based virtual screening. Pharm Res 30:1458–1463

    Article  CAS  Google Scholar 

  5. Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ (2013) Protein-ligand docking in the new millennium—a retrospective of 10 years in the field. Curr Med Chem 20:2296–2314

    Article  CAS  Google Scholar 

  6. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using modeller. Curr Protoc Protein Sci 5–6

    Google Scholar 

  7. Villa E, Balaeff A, Mahadevan L, Schulten K (2004) Multiscale method for simulating protein-DNA complexes. Multiscale Model Simul 2:527–553

    Article  CAS  Google Scholar 

  8. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  CAS  Google Scholar 

  9. Villa E, Balaeff A, Schulten K (2005) Structural dynamics of the lac repressor, DNA complex revealed by a multiscale simulation. Proc Natl Acad Sci USA 102:6783–6788

    Article  CAS  Google Scholar 

  10. Neri M, Anselmi C, Cascella M, Maritan A, Carloni P (2005) Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys Rev Letters 95:218102

    Article  Google Scholar 

  11. Neri M, Baaden M, Carnevale V, Anselmi C, Maritan A, Carloni P (2008) Microseconds dynamics simulations of the outer-membrane protease T. Biophys J 94:71–78

    Article  CAS  Google Scholar 

  12. Kalli AC, Campbell ID, Sansom MS (2011) Multiscale simulations suggest a mechanism for integrin inside-out activation. Proc Natl Acad Sci USA 108:11890–11895

    Article  CAS  Google Scholar 

  13. Messer BM, Roca M, Chu ZT, Vicatos S, Kilshtain AV, Warshel A (2010) Multiscale simulations of protein landscapes: using coarse-grained models as reference potentials to full explicit models. Proteins 78:1212–1227

    Article  CAS  Google Scholar 

  14. Rzepiela AJ, Louhivuori M, Peter C, Marrink SJ (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys 13:10437–10448

    Article  CAS  Google Scholar 

  15. Wassenaar TA, Ingólfsson HI, Prieß M, Marrink SJ, Schäfer LV (2013) Mixing martini: electrostatic coupling in hybrid atomistic–coarse-grained biomolecular simulations. J Phys Chem B 117:3516–3530

    Article  CAS  Google Scholar 

  16. Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8:4413–4424

    Article  CAS  Google Scholar 

  17. Lyman E, Ytreberg FM, Zuckerman DM (2006) Resolution exchange simulation. Phys Rev Lett 96:028105

    Article  Google Scholar 

  18. Lyman E, Zuckerman DM (2006) Resolution exchange simulation with incremental coarsening. J Chem Theory Comput 2:656–666

    Article  CAS  Google Scholar 

  19. Liu P, Voth GA (2007) Smart resolution replica exchange: an efficient algorithm for exploring complex energy landscapes. J Chem Phys 126(4):045106

    Article  Google Scholar 

  20. Leguebe M, Nguyen C, Capece L, Hoang Z, Giorgetti A, Carloni P (2012) Hybrid molecular mechanics/coarse-grained simulations for structural prediction of G-protein coupled receptor/ligand complexes. PLoS ONE 7:e47332

    Article  CAS  Google Scholar 

  21. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Str Biol 17:192–198

    Article  CAS  Google Scholar 

  22. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  23. Nadler W, Brunger AT, Schulten K, Karplus M (1987) Molecular and stochastic dynamics of proteins. Proc Natl Acad Sci USA 84:7933–7937

    Article  CAS  Google Scholar 

  24. Berweger CD, van Gunsteren WF, Müller-Plathe F (1995) Force field parametrization by weak coupling. Re-engineering SPC water. Chem Phys Lett 232:429–436

    Article  CAS  Google Scholar 

  25. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed—algorithms based on hamilton-jacobi formulations. J Comput Phys 79:12–49

    Article  Google Scholar 

  26. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    Article  Google Scholar 

  27. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  Google Scholar 

  28. Audet M, Bouvier M (2012) Restructuring G-protein-coupled receptor activation. Cell 151:14–23

    Article  CAS  Google Scholar 

  29. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  Google Scholar 

  30. Gurevich VV, Gurevich EV (2008) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81

    Article  CAS  Google Scholar 

  31. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  Google Scholar 

  32. Topiol S, Sabio M (2009) X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol 78:11–20

    Article  CAS  Google Scholar 

  33. Sprang SR (2011) Cell signalling: binding the receptor at both ends. Nature 469:172–173

    Article  CAS  Google Scholar 

  34. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    Article  CAS  Google Scholar 

  35. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature. doi:10.1038/nature12167

    Google Scholar 

  36. Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443

    Article  CAS  Google Scholar 

  37. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    Article  CAS  Google Scholar 

  38. Rayan A (2010) New vistas in GPCR 3D structure prediction. J Mol Model 16:183–191

    Article  CAS  Google Scholar 

  39. Giorgetti A, Raimondo D, Miele AE, Tramontano A (2005) Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics 21 Suppl 2: ii72–ii76

    Google Scholar 

  40. Lupieri P, Nguyen CH, Bafghi ZG, Giorgetti A, Carloni P (2009) Computational molecular biology approaches to ligand-target interactions. Hfsp J 3:228–239

    Article  CAS  Google Scholar 

  41. Tramontano A, Cozzetto D, Giorgetti A, Raimondo D (2008) The assessment of methods for protein structure prediction. Methods Mol Biol 413:43–57

    CAS  Google Scholar 

  42. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19:1108–1126

    Article  CAS  Google Scholar 

  43. Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12:4591–4600

    Article  CAS  Google Scholar 

  44. Brockhoff A, Behrens M, Niv MY, Meyerhof W (2010) Structural requirements of bitter taste receptor activation. Proc Natl Acad Sci USA 107:11110–11115

    Article  CAS  Google Scholar 

  45. Reisert J (2010) Origin of basal activity in mammalian olfactory receptor neurons. J Gen physiol 136:529–540

    Article  CAS  Google Scholar 

  46. Khafizov K, Anselmi C, Menini A, Carloni P (2007) Ligand specificity of odorant receptors. J Mol Model 13:401–409

    Article  CAS  Google Scholar 

  47. Biarnes X, Marchiori A, Giorgetti A, Lanzara C, Gasparini P, Carloni P, Born S, Brockhoff A, Behrens M, Meyerhof W (2010) Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS ONE 5:e12394

    Article  Google Scholar 

  48. Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7:769–778

    Article  CAS  Google Scholar 

  49. Levit A, Barak D, Behrens M, Meyerhof W, Niv M (2012) Homology model-assisted elucidation of binding sites in GPCRs. In: Membrane protein structure and dynamics. Humana Press, New York, pp 179–205

    Google Scholar 

  50. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216

    Article  CAS  Google Scholar 

  51. Yarnitzky T, Levit A, Niv MY (2010) Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr Opin in Drug Disc 13:317–325

    CAS  Google Scholar 

  52. Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279:18990–18997

    Article  CAS  Google Scholar 

  53. de Graaf C, Rognan D (2009) Customizing G Protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15:4026–4048

    Article  Google Scholar 

  54. Bhattacharya S, Subramanian G, Hall S, Lin J, Laoui A, Vaidehi N (2010) Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1. J Comput Aided Mol Des 24:659–674

    Article  CAS  Google Scholar 

  55. Marchiori A, Capece L, Giorgetti A, Gasparini P, Behrens M, Carloni P, Meyerhof W (2013) Coarse-grained/molecular mechanics of the TAS2R38 bitter taste receptor: experimentally-validated detailed structural prediction of agonist binding. PLoS ONE 8(5):e64675

    Article  CAS  Google Scholar 

  56. Niv M, Skrabanek L, Filizola M, Weinstein H (2006) Modeling activated states of GPCRs: the rhodopsin template. J Comput Aided Mol Des 20:437–448

    Article  CAS  Google Scholar 

  57. Niv MY, Filizola M (2008) Influence of oligomerization on the dynamics of G-protein coupled receptors as assessed by normal mode analysis. Proteins 71:575–586

    Article  CAS  Google Scholar 

  58. Ivanov AA, Barak D, Jacobson KA (2009) Evaluation of Homology Modeling of G-Protein-Coupled Receptors in Light of the A2A Adenosine Receptor Crystallographic Structure. J Med Chem 52:3284–3292

    Article  CAS  Google Scholar 

  59. Slack JP, Brockhoff A, Batram C, Menzel S, Sonnabend C, Born S, Galindo MM, Kohl S, Thalmann S, Ostopovici-Halip L, Simons CT, Ungureanu I, Duineveld K, Bologa CG, Behrens M, Furrer S, Oprea TI, Meyerhof W (2010) Modulation of bitter taste perception by a small molecule hTAS2R antagonist. Curr Biol 20:1104–1109

    Article  CAS  Google Scholar 

  60. Garcia-Perez J, Rueda P, Alcami J, Rognan D, Arenzana-Seisdedos F, Lagane B, Kellenberger E (2011) Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J Biol Chem 286:33409–33421

    Article  CAS  Google Scholar 

  61. Kothandan G, Gadhe CG, Cho SJ (2012) Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study. PLoS ONE 7:e32864

    Article  CAS  Google Scholar 

  62. Camacho CJ (2005) Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets. Proteins 60:245–251

    Article  CAS  Google Scholar 

  63. Angel TE, Chance MR, Palczewski K (2009) Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc Natl Acad Sci USA 106:8555–8560

    Article  CAS  Google Scholar 

  64. Nygaard R, Valentin-Hansen L, Mokrosinski J, Frimurer TM, Schwartz TW (2010) Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation. J Biol Chem 285:19625–19636

    Article  CAS  Google Scholar 

  65. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  66. Vanni S, Neri M, Tavernelli I, Rothlisberger U (2011) Predicting novel binding modes of agonists to b adrenergic receptors using all-atom molecular dynamics simulations. PLoS Comput Biol 7:e1001053

    Article  CAS  Google Scholar 

  67. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinform 5–6

    Google Scholar 

  68. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Carloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giorgetti, A., Carloni, P. (2014). Molecular Mechanics/Coarse-Grained Models. In: Náray-Szabó, G. (eds) Protein Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-09976-7_7

Download citation

Publish with us

Policies and ethics