Skip to main content

Continuum Electrostatic Analysis of Proteins

  • Chapter
  • First Online:
Protein Modelling

Abstract

Electrostatic interactions play an important role in many biochemical processes. The continuum electrostatics model, which originates from the Poisson-Boltzmann equation, provides a framework to represent the electrostatics properties of proteins together with their ligands and how these properties are influenced by the solvent; all this with limited computational costs. Therefore, methods based on continuum electrostatics are ideal to analyze bio-molecular processes in their own environment. In this review, first we illustrate the physical basis of the Poisson-Boltzmann equation, then we discuss the strategy to obtain its solution, i.e. the electrostatic potential, and which information can be deducted from it. Afterwards, we report how methods based on continuum electrostatics can be applied to analyze the interactions of proteins, in particular electron transfer proteins, and to calculate the probabilities of protonation and redox states of proteins. Furthermore, we outline how continuum electrostatics allows to access also the non-equilibrium behavior of bio-molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feig M (ed) (2010) Modeling solvent environments. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M et al (2001) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed Engl 45:4064–4092

    Article  Google Scholar 

  3. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  CAS  Google Scholar 

  4. Richards FM (1977) Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng 6:151–176

    Article  CAS  Google Scholar 

  5. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  Google Scholar 

  6. Kirkwood JG (1934) Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys 2:351–361

    Article  CAS  Google Scholar 

  7. Daune M (1999) Molecular Biophysics. University Press, Oxford

    Google Scholar 

  8. Warwicker J, Watson HC (1982) Calculation of the electrostatic potential in the active site cleft due the α-helix dipols. J Mol Biol 186:671–679

    Article  Google Scholar 

  9. Bashford D (1997) An object-oriented programming suite for electrostatic effects in biological molecules. In Yutaka I, Rodney RO, John VWR, Marydell T (eds) Scientific computing in object-oriented parallel environments. Springer, Berlin, pp 233–240

    Google Scholar 

  10. Im W, Beglov D, Roux B (1998) Continuum solvation model: electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comp Phys Comm 111:59–75

    Article  CAS  Google Scholar 

  11. Boschitsch AH, Fenley MO (2011) A fast and robust Poisson-Boltzmann solver based on adaptive cartesian grids. J Chem Theor Comput 7:1524–1540

    Google Scholar 

  12. Holst MJ, Saied F (1993) Multigrid solution of the Poisson-Boltzmann equation. J Comput Chem 14:105–113

    Article  Google Scholar 

  13. Holst MJ, Saied F (1995) Numerical-solution of the nonlinear Poisson-Boltzmann equation: developing more robust and efficient methods. J Comput Chem 16:337–364

    Article  CAS  Google Scholar 

  14. Holst MJ (2001) Adaptive numerical treatment of elliptic systems on manifolds. Adv Comp Math 15:139–191

    Article  Google Scholar 

  15. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  Google Scholar 

  16. Sklenar H, Eisenhaber F, Poncin M, Lavery R (1990) Including solvent and counterion effects in the force fields of macromolecular mechanics: the field integrated electrostatic approach (FIESTA). In: David LB, Richard L (eds) Theoretical biochemistry and molecular biophysics, pp 317–335

    Google Scholar 

  17. Cortis CM, Friesner RA (1997) Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes. J Comp Chem 18:1591–1608

    Article  CAS  Google Scholar 

  18. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–380

    Article  CAS  Google Scholar 

  19. Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986) Focusing of electric fields in the active site of Cu–Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins 1:47–59

    Article  CAS  Google Scholar 

  20. Sengupta D, Behera RN, Smith JC, Ullmann GM (2005) The α-helix dipole: screened out? Structure 13:849–855

    Article  CAS  Google Scholar 

  21. Sengupta D, Meinhold L, Langosch D, Ullmann GM, Smith JC (2005) Energetics of helical-peptide orientations in membranes. Proteins 58:913–922

    Article  CAS  Google Scholar 

  22. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  23. Bashir Q, Scanu S, Ubbink M (2011) Dynamics in electron transfer protein complexes. FEBS J 278:1391–1400

    Article  CAS  Google Scholar 

  24. Ullmann GM, Knapp EW, Kostic NM (1997) Computational simulation and analysis of the dynamic association between plastocyanin and cytochrome f. Consequences for the electron-transfer reaction. J Am Chem Soc 119:42–52

    Article  CAS  Google Scholar 

  25. Ubbink M, Ejdebäck M, Karlson BG, Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid body molecular dynamics. Structure 6:323–335

    Article  CAS  Google Scholar 

  26. Qin L, Kostic NM (1993) Importance of protein rearrangement in the electron-transfer reaction between the physiological partners cytochrome f and plastocyanin. Biochemistry 32:6073–6080

    Article  CAS  Google Scholar 

  27. Pearson DC, Gross EL, David E (1996) Electrostatic properties of cytochrome f: implications for docking with plastocyanin. Biophys J 71:64–76

    Article  CAS  Google Scholar 

  28. De Rienzo F, Gabdoulline RR, Menziani MC, De Benedetti PG, Wade RC (2001) Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys J 81:3090–3104

    Article  Google Scholar 

  29. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equation of state calculation by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  30. Bashir Q, Volkov AN, Ullmann GM, Ubbink M (2010) Visualization of the encounter ensemble of the transient electron transfer complex of cytochrome c and cytochrome c peroxidase. J Am Chem Soc 132:241–247

    Article  CAS  Google Scholar 

  31. Volkov AN, Bashir Q, Worrall JAR, Ullmann GM, Ubbink M (2010) Shifting the equilibrium between the encounter state and the specific form of a protein complex by interfacial point mutations. J Am Chem Soc 132:11487–11495

    Article  CAS  Google Scholar 

  32. Kostić NM (1996) Dynamic aspects of electron-transfer reactions in metalloprotein complexes. In: Metal-containing polymeric materials. Plenum Press, New York, pp 491–500

    Google Scholar 

  33. Madura JD, Davis ME, Gilson MK, Wade RC, Luty BA et al (1994) Biological applications of electrostatic calculations and Brownian dynamics. Rev Comp Chem 5:229–267

    CAS  Google Scholar 

  34. Gabdoulline RR, Wade RC (2002) Biomolecular diffusional association. Curr Opin Struct Biol 12:204–213

    Article  CAS  Google Scholar 

  35. Andrew SM, Thomasson KA, Northrup SH (1993) Simulation of electron-transfer self-exchange in cytochromes c and b 5. J Am Chem Soc 115:5516–5521

    Article  CAS  Google Scholar 

  36. Northrup SH, Allison SA, McCammon JA (1984) Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J Chem Phys 80:1517–1524

    Article  CAS  Google Scholar 

  37. Northrup SH (1994) Hydrodynamic motions of large molecules. Curr Opin Struct Biol 4:269–274

    Article  CAS  Google Scholar 

  38. Pearson DC, Gross EL (1995) The docking of cytochrome f with plastocyanin: three possible complexes. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol II. Kluwer Academic Publishers, New York, pp 729–732

    Google Scholar 

  39. Haddadian EJ, Gross EL (2006) A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii. Biophys J 90:566–577

    Article  CAS  Google Scholar 

  40. Gross EL, Rosenberg I (2006) A Brownian dynamics study of the interaction of phormidium cytochrome f with various cyanobacterial plastocyanins. Biophys J 90:366–380

    Article  CAS  Google Scholar 

  41. Haddadian EJ, Gross EL (2005) Brownian dynamics study of cytochrome f interactions with cytochrome c(6) and plastocyanin in Chlamydomonas reinhardtii plastocyanin, and cytochrome c(6) mutants. Biophys J 88:2323–2339

    Article  CAS  Google Scholar 

  42. Ullmann GM, Hauswald M, Jensen A, Kostic NM, Knapp EW (1997) Comparison of the physiologically-equivalent proteins cytochrome c 6 and plastocyanin on the basis of their electrostatic potentials. Tryptophane 63 in cytochrome c 6 may be isofunctional with tyrosine 83 in plastocyanin. Biochemistry 36:16187–16196

    Article  CAS  Google Scholar 

  43. Ullmann GM, Hauswald M, Jensen A, Knapp EW (2000) Superposition of ferredoxin and flavodoxin using their electrostatic potentials. Implications for their interactions with photosystem I and ferredoxin: NADP reductase. Proteins 38:301–309

    Article  CAS  Google Scholar 

  44. Hodgkin E, Richards W (1987) Molecular similarity based on electrostatic potential and electric field. Int J Quant Chem Quant Biol Symp 14:105–110

    Article  CAS  Google Scholar 

  45. Klingen AR, Ullmann GM (2006) Theoretical investigation of the behavior of titratable groups in proteins. Photochem Photobiol Sci 5:588–596

    Article  CAS  Google Scholar 

  46. Bashford D, Karplus M (1990) pK as of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    Article  CAS  Google Scholar 

  47. Ullmann GM, Knapp EW (1999) Electrostatic computations of protonation and redox equilibria in proteins. Eur Biophys J 28:533–551

    Article  CAS  Google Scholar 

  48. Ullmann GM (2000) The coupling of protonation and reduction in proteins with multiple redox centers: theory, computational method, and application to cytochrome c 3. J Phys Chem B 104:6293–6301

    Article  CAS  Google Scholar 

  49. Gunner MR, Mao J, Song Y, Kim J (2006) Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. Biochim Biophys Acta 1757:942–968

    Article  CAS  Google Scholar 

  50. Nielsen JE, McCammon JA (2003) Calculating pKa values in enzyme active sites. Protein Sci 12:1894–1901

    Article  CAS  Google Scholar 

  51. Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center. Proc Natl Acad Sci USA 88:5804–5808

    Article  CAS  Google Scholar 

  52. Ullmann RT, Ullmann GM (2012) GMCT: a Monte Carlo simulation package for macromolecular receptors. J Comp Chem 33:887–900

    Article  CAS  Google Scholar 

  53. Ullmann GM (2003) Relations between protonation constants and titration curves in polyprotic acids: a critical view. J Phys Chem B 107:6293–6301

    Article  Google Scholar 

  54. Onufriev A, Case DA, Ullmann GM (2001) A novel view on the ph titration of biomolecules. Biochemistry 40:3413–3419

    Article  CAS  Google Scholar 

  55. Onufriev A, Ullmann GM (2004) Decomposing complex ligand binding into simple components: connections between microscopic and macroscopic models. J Phys Chem B 108:11157–11169

    Article  CAS  Google Scholar 

  56. Bombarda E, Ullmann GM (2010) pH-dependent pk a values in proteins-a theoretical analysis of protonation energies with practical consequences for enzymatic reactions. J Phys Chem B 114:1994–2003

    Article  CAS  Google Scholar 

  57. Kula R, Sawyer D (1964) Protonation studies of anion of diethylenetriaminepentaacetic acid by nuclear magnetic resonance. Inorg Chem 3:458

    Article  CAS  Google Scholar 

  58. Sudmeier JL, Reilley CN (1964) Nuclear magnetic resonance studies of protonation of polyamine and aminocarboxylate compounds in aqueous solution. Analyt Chem 36:1698–1706

    Article  CAS  Google Scholar 

  59. Letkeman P (1979) An NMR protonation study of metal diethylenetriaminepentaacetic acid complexes. J Chem Ed 56:348–351

    Article  CAS  Google Scholar 

  60. Klamt A, Schuurmann G (1993) Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  61. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  62. Miertus S, Scrocco E, Tomas J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  63. Chen JL, Noodleman L, Case D, Bashford D (1994) Incorporating solvation effects into density functional electronic structure calculations. J Phys Chem 98:11059–11068

    Article  CAS  Google Scholar 

  64. Li J, Fischer CL, Chen JL, Bashford D, Noodleman L (1996) Calculation of redox potentials and pK a values of hydrated transition metal cations by a combined density functional and continuum dielectric theory. J Phys Chem 96:2855–2866

    Google Scholar 

  65. Richardson WH, Peng C, Bashford D, Noodleman L, Case DA (1997) Incorporating solvation effects into density functional theory: calculation of absolute acidities. Int J Quant Chem 61:207–217

    Article  CAS  Google Scholar 

  66. Li J, Nelson MR, Peng CY, Bashford D, Noodleman L (1998) Incorporating protein environments in density functional theory: a self-consistent reaction field calculation of redox potentials of [2Fe2S] clusters in ferredoxin and phthalate dioxygenase reductase. J Phys Chem A 102:6311–6324

    Article  CAS  Google Scholar 

  67. Liu T, Han WG, Himo F, Ullmann GM, Bashford D et al (2004) Density functional vertical self-consistent reaction field theory for solvatochromism studies of solvent-sensitive dyes. J Phys Chem B 108:11157–11169

    Article  Google Scholar 

  68. Sham YY, Muegge I, Warshel A (1999) Simulating proton translocations in proteins: probing proton transfer pathways in the Rhodobacter sphaeroides reaction center. Proteins 36:484–500

    Article  CAS  Google Scholar 

  69. Ferreira A, Bashford D (2006) Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle. J Am Chem Soc 128:16778–16790

    Article  CAS  Google Scholar 

  70. Becker T, Ullmann RT, Ullmann GM (2007) Simulation of the electron transfer between the tetraheme-subunit and the special pair of the photosynthetic reaction center using a microstate description. J Phys Chem B 111:2957–2968

    Article  CAS  Google Scholar 

  71. Bombarda E, Ullmann GM (2011) Continuum electrostatic investigations of charge transfer processes in biological molecules using a microstate description. Faraday Discuss 148:173–193

    Article  CAS  Google Scholar 

  72. Kloppmann E, Ullmann GM, Becker T (2007) An extended dead-end elimination algorithm to determine gap-free lists of low energy states. J Comp Chem 28:2325–2335

    Article  CAS  Google Scholar 

  73. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  Google Scholar 

  74. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation–reduction. Nature 402:47–52

    Article  CAS  Google Scholar 

  75. Marcus RA (1963) Free energy of nonequilibrium polarization systems. II. Homogeneous and electrode systems. J Chem Phys 38:1858–1862

    Article  CAS  Google Scholar 

  76. Sharp KE (1998) Calculation of electron transfer reorganization energies using the finite difference Poisson Boltzmann model. Biophys J 73:1241–1250

    Article  Google Scholar 

  77. Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  78. Williams RJP (1999) Electron transfer and proton coupling in proteins. J Solid State Chem 145:488–495

    Article  CAS  Google Scholar 

  79. Olsson MHM, Ryde U, Roos BO (1998) Quantum chemical calculation of the reorganization energy of blue copper proteins. Prot Sci 81:6554–6558

    Google Scholar 

  80. Ryde U, Olsson MHM (2001) Structure, strain and reorganization energy of blue copper models in the protein. Int J Quant Chem 81:335–347

    Article  CAS  Google Scholar 

  81. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716–1733

    Article  CAS  Google Scholar 

  82. Till MS, Becker T, Essigke T, Ullmann GM (2008) Simulating the proton transfer in gramicidin A by a sequential dynamical Monte Carlo method. J Phys Chem B 112:13401–13410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG Grants UL 174/8 and BO 3578/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Matthias Ullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ullmann, G.M., Bombarda, E. (2014). Continuum Electrostatic Analysis of Proteins. In: Náray-Szabó, G. (eds) Protein Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-09976-7_6

Download citation

Publish with us

Policies and ethics