Skip to main content

Quantum Chemical Calculations on Small Protein Models

  • Chapter
  • First Online:
Protein Modelling

Abstract

After the definition of the peptide bond and its strength, as measured by its amidicity values the Ramachandran type potential energy surface (PES) of the backbone was investigated. Various alternatives, such as fitting mathematical functions the PES and its toroidal representation were discussed. A brief review of small peptides and oligopeptides was presented from a historic point of view. Peptide radicals as the cause of aging and numerous diseases were also outline. Finally it was concluded that the ultimate peptide and protein folding problem can be expected only after the chemical problem is rephrased as a mathematical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csizmadia IG, Harrison MC, Sutcliffe BT (1963) Non-empirical LCAO-SCF calculation of formyl fluoride with gaussian atomic orbitals. Q Prog Rep 50:1

    Google Scholar 

  2. Csizmadia IG, Harrison MC, Moskowitz JW, Sutcliffe BT (1966) Non-empirical LCAO-MO-SCF-CI calculations on organic molecules with gaussian type functions. Part I Theor Chim Acta 6:191

    CAS  Google Scholar 

  3. Gerlei KZ, Jákli I, Szőri M et al (2013) Atropisomerism of the Asn α radicals revealed by Ramachandran surface topology. J Phys Chem B 117:12402–12409. doi:10.1021/jp4070906

    CAS  Google Scholar 

  4. Robb MA, Csizmadia IG (1968) Non-empirical LCAO-MO-SCF-CI calculations on organic molecules with gaussian type functions. Theor Chim Acta 10:269

    CAS  Google Scholar 

  5. Mucsi Z, Tsai A, Szori M et al (2007) A quantitative scale for the extent of conjugation of the amide bond. Amidity percentage as a chemical driving force. J Phys Chem A 111:13245–13254. doi:10.1021/jp0759325

    CAS  Google Scholar 

  6. Weintraub SJ, Manson SR (2004) Asparagine deamidation: a regulatory hourglass. Mech Ageing Dev 125:255–257. doi:10.1016/j.mad.2004.03.002

    CAS  Google Scholar 

  7. Robinson NE, Robinson AB (2001) Deamidation of human proteins. Proc Natl Acad Sci USA 98:12409–12413. doi:10.1073/pnas.221463198

    CAS  Google Scholar 

  8. Ritz-Timme S, Laumeier I, Collins M (2003) Age estimation based on aspartic acid racemization in elastin from the yellow ligaments. Int J Legal Med 117:96–101. doi:10.1007/s00414-002-0355-2

    CAS  Google Scholar 

  9. Ohtani S, Yamamoto T (2010) Age estimation by amino acid racemization in human teeth. J Forensic Sci 55:1630–1633. doi:10.1111/j.1556-4029.2010.01472.x

    Google Scholar 

  10. Thorpe CT, Streeter I, Pinchbeck GL et al (2010) Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 285:15674–15681. doi:10.1074/jbc.M109.077503

    CAS  Google Scholar 

  11. Peters B, Trout BL (2006) Asparagine deamidation: pH-dependent mechanism from density functional theory. Biochemistry 45:5384–5392. doi:10.1021/bi052438n

    CAS  Google Scholar 

  12. Catak S, Monard G, Aviyente V, Ruiz-López MF (2008) Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. J Phys Chem A 112:8752–8761. doi:10.1021/jp8015497

    CAS  Google Scholar 

  13. Fujii N, Tajima S, Tanaka N et al (2002) The presence of D-beta-aspartic acid-containing peptides in elastic fibers of sun-damaged skin: a potent marker for ultraviolet-induced skin aging. Biochem Biophys Res Commun 294:1047–1051. doi:10.1016/S0006-291X(02)00597-1

    CAS  Google Scholar 

  14. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99. doi:10.1016/S0022-2836(63)80023-6

    CAS  Google Scholar 

  15. Perczel A, Angyan JG, Kajtar M et al (1991) Peptide models. 1. Topology of selected peptide conformational potential energy surfaces (glycine and alanine derivatives). J Am Chem Soc 113:6256–6265. doi:10.1021/ja00016a049

    CAS  Google Scholar 

  16. Csizmadia IG (1997) Basic principles for introductory organic chemistry. Quirk Press, Toronto, pp 135–141

    Google Scholar 

  17. Perczel A, Kajtar M, Marcoccia JF, Csizmadia IG (1991) The utility of the four-dimensional Ramachandran map for the description of peptide conformations. J Mol Struct THEOCHEM 232:291–319. doi:http://dx.doi.org/10.1016/0166-1280(91)85261-5

  18. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  Google Scholar 

  19. Radom L, Hehre JW, Pople JA (1972) Molecular orbital theory of the electronic structure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules. J Am Chem Soc 94:2371–2381. doi:10.1021/ja00762a030

    CAS  Google Scholar 

  20. Radom L, Lathan WA, Hehre WJ, Pople JA (1973) Molecular orbital theory of the electronic structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes. J Am Chem Soc 95:693–698. doi:10.1021/ja00784a008

    CAS  Google Scholar 

  21. Kehoe TAK, Peterson MR, Chass GA, et al (2003) The fitting and functional analysis of a double rotor potential energy surface for the R and S enantiomers of 1-chloro-3-fluoro-isobutane. J Mol Struct THEOCHEM 666–667:79–87. doi:http://dx.doi.org/10.1016/j.theochem.2003.08.015

  22. Demaré GR, Peterson MR, Csizmadia IG, Strausz OP (1980) Conformational energy surfaces of triplet-state isomeric methyloxiranes. J Comp Chem 1:141–148. doi:10.1002/jcc.540010206

    Google Scholar 

  23. Peterson R, Mare RDE, Roosevelt AFD (1981) Conformations formaldehyde, acetone of triplet carbonyl compounds: and the reaction of 0 (3P) atoms with olefins proceeds via a C % Ci, triplet biradical [ l ], which can undergo intersystem crossing to the So state and be stabilized as an epoxide, 86:131–147

    Google Scholar 

  24. Rágyanszki A, Surányi A, Csizmadia IG, et al (2014) Fourier type potential energy function for conformational change of selected organic functional groups. Chem Phys Lett 599:169–174. doi:http://dx.doi.org/10.1016/j.cplett.2014.03.029

  25. Pohl G, Perczel A, Vass E et al (2007) A matrix isolation study on Ac-Gly-NHMe and Ac-L-Ala-NHMe, the simplest chiral and achiral building blocks of peptides and proteins. Phys Chem Chem Phys 9:4698–4708

    CAS  Google Scholar 

  26. Pohl G, Perczel A, Vass E et al (2008) A matrix isolation study on Ac-L-Pro-NH2: a frequent structural element of beta- and gamma-turns of peptides and proteins. Tetrahedron 64(9):2126–2133

    CAS  Google Scholar 

  27. Jákli I, Knak Jensen SJ, Csizmadia IG, Perczel A (2012) Variation of conformational properties at a glance. True graphical visualization of the Ramachandran surface topology as a periodic potential energy surface. Chem Phys Lett 547:82–88. doi:10.1016/j.cplett.2012.08.002

    Google Scholar 

  28. Viviani W, Rivail J-L, Csizmadia I (1993) Peptide models II. Intramolecular interactions and stable conformations of glycine, alanine, and valine peptide analogues. Theor Chim Acta 85:189–197. doi:10.1007/BF01374587

    CAS  Google Scholar 

  29. McAllister MA, Perczel A, Császár P et al (1993) Peptide models 4. Topological features of molecular mechanics and ab initio 2D-Ramachandran maps. J Mol Struct THEOCHEM 288:161–179. doi:10.1016/0166-1280(93)87048-I

    Google Scholar 

  30. Endrédi G, Perczel A, Farkas O, et al (1997) Peptide models XV. The effect of basis set size increase and electron correlation on selected minima of the ab initio 2D-Ramachandran map of For-Gly-NH2 and For-l-Ala-NH2. J Mol Struct THEOCHEM 391:15–26. doi:http://dx.doi.org/10.1016/S0166-1280(96)04695-7

  31. Viviani W, Rivail JL, Perczel A, Csizmadia IG (1993) Peptide models. 3. Conformational potential energy hypersurface of formyl-L-valinamide. J Am Chem Soc 115:8321–8329. doi:10.1021/ja00071a046

    CAS  Google Scholar 

  32. Perczel A, Farkas O, Csizmadia IG (1995) Peptide models. 17. The role of the water molecule in peptide folding. An ab initio study on the right-handed helical conformations of N-formylglycinamide and N-formyl-L-alaninamide monohydrates [H(CONH-CHR-CONH)H.H2O; R=H or CH3]. J Am Chem Soc 117:1653–1654. doi:10.1021/ja00110a028

    CAS  Google Scholar 

  33. Perczel A, Daudel R, Ångyån JG, Csizmadia IG (1990) A study on the backbone/side-chain interaction in N-formyl-(L)serineamide. Can J Chem 68:1882–1888. doi:10.1139/v90-291

    CAS  Google Scholar 

  34. Farkas Ö, Perczel A, Marcoccia J-F, et al (1995) Peptide models XIII. Side-chain conformational energy surface E=E(χ1, χ2) of N-formyl-l-serinamide (For-l-Ser-NH2) in its γL or C7 eq backbone conformation. J Mol Struct THEOCHEM 331:27–36. doi:http://dx.doi.org/10.1016/0166-1280(94)03929-F

  35. Perczel A, Farkas Ö, Csizmadia IG (1996) Peptide models XVI. The identification of selected HCO—L—SER—NH2 conformers via a systematic grid search using ab initio potential energy surfaces. J Comput Chem 17:821–834. doi:10.1002/(SICI)1096-987X(199605)17:7<821:AID-JCC6>3.0.CO;2-U

    CAS  Google Scholar 

  36. Perczel A, Farkas Ö, Csizmadia IG (1996) Peptide models. 18. hydroxymethyl side-chain induced backbone conformational shifts of l-serine amide. All ab Initio conformers of for-l-Ser-NH2. J Am Chem Soc 118:7809–7817. doi:10.1021/ja960464q

    CAS  Google Scholar 

  37. Perczel A, Farkas Ö, Jákli I, Csizmadia IG (1998) Peptide models XXI. Side-chain/backbone conformational interconversions in HCO-l-Ser-NH2. Tracing relaxation paths by ab initio modeling. An exploratory study. J Mol Struct THEOCHEM 455:315–338

    CAS  Google Scholar 

  38. Imre Jákli AP (2000) Peptide models XXIII. Conformational model for polar side-chain containing amino acid residues: a comprehensive analysis of RHF, DFT, and MP2 properties of HCO-L-SER-NH2. J Comput Chem 21:626–655. doi:10.1002/(SICI)1096-987X(200006)21:83.0.CO;2-P

    Google Scholar 

  39. Fang D-C, Fu X-Y, Tang T-H, Csizmadia IG (1998) Ab initio modelling of peptide biosynthesis. J Mol Struct THEOCHEM 427:243–252. doi:http://dx.doi.org/10.1016/S0166-1280(97)00257-1

  40. Galant NJ, Lee DR, Fiser B, et al (2012) Disulfidicity: a scale to characterize the disulfide bond strength via the hydrogenation thermodynamics. Chem Phys Lett 539–540:11–14. doi:http://dx.doi.org/10.1016/j.cplett.2012.05.017

  41. Galant NJ, Song HC, Jákli I et al (2014) A theoretical study of the stability of disulfide bridges in various β-sheet structures of protein segment models. Chem Phys Lett 593:48–54

    CAS  Google Scholar 

  42. Vank JC, Sosa CP, Perczel A, Csizmadia IG (2000) Peptide models XXVII. An exploratory ab initio study on the 21st amino acid side-chain conformations of N-formyl-L-selenocysteinamide (For-L-Sec-NH2) and N-acetyl-L-selenocysteine-N-methylamide (Ac-L-Sec-NHMe) in their γL backbone conformation. Can J Chem 78:395–408. doi:10.1139/v00-029

    CAS  Google Scholar 

  43. Fiser B, Mucsi Z, Viskolcz B et al (2013) Controlled antioxidative steps of the cell. The concept of chalcogenicity. Chem Phys Lett 590:83–86. doi:10.1016/j.cplett.2013.10.033

    CAS  Google Scholar 

  44. Láng A, György K, Csizmadia IG, Perczel A (2003) A conformational comparison of N- and C-protected methionine and N- and C-protected homocysteine. J Mol Struct THEOCHEM 666–667:219–241. doi:http://dx.doi.org/10.1016/j.theochem.2003.08.029

  45. Láng A, Csizmadia IG, Perczel A (2005) Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins. Proteins 58:571–588. doi:10.1002/prot.20307

    Google Scholar 

  46. Sheraly AR, Chass GA, Csizmadia IG (2003) The multidimensional conformational analysis for the backbone across the disrotatory axis at selected side-chain conformers of N-Ac-homocysteine-NHMe—an ab initio exploratory study. J Mol Struct THEOCHEM 666–667:243–249. doi:http://dx.doi.org/10.1016/j.theochem.2003.08.030

  47. Sahai MA, Motiwala SS, Chass GA et al (2003) An ab initio exploratory study of the full conformational space of MeCO-l-threonine-NH-Me. J Mol Struct THEOCHEM 666–667:251–267. doi:10.1016/j.theochem.2003.08.031

    Google Scholar 

  48. Sahai MA, Fejer SN, Viskolcz B et al (2006) First-principle computational study on the full conformational space of L-threonine diamide, the energetic stability of cis and trans isomers. J Phys Chem A 110:11527–11536. doi:10.1021/jp0680488

    CAS  Google Scholar 

  49. Lam JSW, Koo JCP, Hudaky I, et al. Predicting the conformational preferences of N-acetyl-4-hydroxy-L-proline-N-methylamide from the proline residue. J Mol Struct Theochem 666–667:285–289

    Google Scholar 

  50. Rassolian M, Chass GA, Setiadi DH, Csizmadia IG (2003) Asparagine—ab initio structural analyses. J Mol Struct THEOCHEM 666–667:273–278. doi:http://dx.doi.org/10.1016/j.theochem.2003.08.032

  51. Berg M, Salpietro SJ, Perczel A et al (2000) Peptide models XXVI Side chain conformational analysis of N-formyl-L-asparagin amide and N-acetyl-L-asparagin N-methylamide in their gL backbone conformation. J Mol Struct 504:127–140

    CAS  Google Scholar 

  52. Masman MF, Zamora MA, Rodrıguez AM et al (2002) Exploration of the full conformational space of N-acetyl-L-glutamate-N-methylamide. Eur Phys J D-At Mol Opt Plasma Phys 20:531–542. doi:10.1140/epjd/e2002-00150-y

    CAS  Google Scholar 

  53. Salpietro SJ, Perczel A, Farkas Ö et al (2000) Peptide models XXV. Side-chain conformational potential energy surface, of N-formyl-l-aspartic acidamide and its conjugate base N-formyl-l-aspartatamide in their γl backbone conformations. J Mol Struct THEOCHEM 497:39–63. doi:10.1016/S0166-1280(99)00196-7

    CAS  Google Scholar 

  54. Koo JCP, Chass GA, Perczel A et al (2002) Exploration of the four-dimensional-conformational potential energy hypersurface of N-Acetyl-l-aspartic Acid N-Methylamide with its internally hydrogen bonded side-chain orientation. J Phys Chem A 106:6999–7009. doi:10.1021/jp014514b

    CAS  Google Scholar 

  55. Koo JCP, Chass GA, Perczel A et al (2002) N-acetyl-L-aspartic acid-N-methylamide with side-chain orientation capable of external hydrogen bonding. Eur Phys J D-At Mol Opt Plasma Phys 20:499–511. doi:10.1140/epjd/e2002-00148-5

    CAS  Google Scholar 

  56. Koo JCP, Lam JSW, Chass GA, et al. (2003) Ramachandran backbone potential energy surfaces of aspartic acid and aspartate residues: implications on allosteric sites in receptor–ligand complexations. J Mol Struct THEOCHEM 666–667:279–284. doi:http://dx.doi.org/10.1016/j.theochem.2003.08.055

  57. Farkas Ö, McAllister MA, Ma JH et al (1996) Peptide models XIX: side-chain conformational energy surface and amide I vibrational frequencies of N-formyl-l-phenylalaninamide (For-Phe-NH2) in its γL or γinv or C7 eq backbone conformation. J Mol Struct THEOCHEM 369:105–114. doi:10.1016/S0166-1280(96)04548-4

    CAS  Google Scholar 

  58. Perczel A, Farkas Ö, Csizmadia IG, Császar AG (1997) Peptide models XX. Aromatic side-chain–backbone interaction in phenylalanine-containing diamide model system. A systematic search for the identification of all the ab initio conformers of N-formyl-L-phenylalanine-amide. Can J Chem 75:1120–1130. doi:10.1139/v97-134

    CAS  Google Scholar 

  59. Jákli I, Perczel A, Farkas Ö et al (1998) Peptide models XXII. A conformational model for aromatic amino acid residues in proteins. A comprehensive analysis of all the RHF/6–31 + G* conformers of for-L-Phe–NH2. J Mol Struct THEOCHEM 455:303–314

    Google Scholar 

  60. Chass GA, Mirasol RS, Setiadi DH et al (2005) Characterization of the conformational probability of N-acetyl-phenylalanyl-NH2 by RHF, DFT, and MP2 computation and AIM analyses, confirmed by jet-cooled infrared data. J Phys Chem A 109:5289–5302. doi:10.1021/jp040720i

    CAS  Google Scholar 

  61. Chass GA, Lovas S, Murphy RF, Csizmadia IG (2002) The role of enhanced aromatic-electron donating aptitude of the tyrosyl sidechain with respect to that of phenylalanyl in intramolecular interactions. Eur Phys J D 20:481–497. doi:10.1140/epjd/e2002-00155-6

    CAS  Google Scholar 

  62. Sahai MA, Kehoe TAK, Koo JCP et al (2005) First principle computational study on the full conformational space of l-proline diamides. J Phys Chem A 109:2660–2679. doi:10.1021/jp040594i

    CAS  Google Scholar 

  63. Füzéry AK, Csizmadia IG (2000) An exploratory density functional study on N- and C-protected trans-α, β-didehydroalanine. J Mol Struct THEOCHEM 501–502:539–547. doi:10.1016/S0166-1280(99)00469-8

    Google Scholar 

  64. Baldoni HA, Zamarbide GN, Enriz RD, et al (2000) Peptide models XXIX. cis–trans Isomerism of peptide bonds: ab initio study on small peptide model compound; the 3D-Ramachandran map of formylglycinamide. J Mol Struct THEOCHEM 500:97–111. doi:http://dx.doi.org/10.1016/S0166-1280(00)00372-9

  65. Sahai MA, Szöri M, Viskolcz B et al (2007) Transition state infrared spectra for the trans → Cis isomerization of a simple peptide model. J Phys Chem A 111:8384–8389. doi:10.1021/jp074991f

    CAS  Google Scholar 

  66. Van Alsenoy C, Cao M, Newton SQ et al (1993) Conformational analysis and structural study by ab initio gradient geometry optimizations of the model tripeptide N-formyl L-alanyl L-alanine amide. J Mol Struct THEOCHEM 286:149–163. doi:10.1016/0166-1280(93)87160-F

    Google Scholar 

  67. McAllister MA, Perczel A, Császár P, Csizmadia IG (1993) Peptide models 5. Topological features of molecular mechanics and ab initio 4D-Ramachandran maps. J Mol Struct THEOCHEM 288:181–198. doi:10.1016/0166-1280(93)87049-J

    Google Scholar 

  68. Perczel A, McAllister MA, Császár P, Csizmadia IG (1994) Peptide models. IX. A complete conformational set of For-Ala-Ala-NH2 from ab inito computations. Can J Chem 72:2050–2070. doi:10.1139/v94-262

    CAS  Google Scholar 

  69. Perczel A, McAllister MA, Csaszar P, Csizmadia IG (1993) Peptide models 6. New.beta.-turn conformations from ab initio calculations confirmed by x-ray data of proteins. J Am Chem Soc 115:4849–4858. doi:10.1021/ja00064a053

    CAS  Google Scholar 

  70. Perczel A, Jákli I, McAllister MA, Csizmadia IG (2003) Relative stability of major types of beta-turns as a function of amino acid composition: a study based on Ab initio energetic and natural abundance data. Chemistry 9:2551–2566. doi:10.1002/chem.200204393

    CAS  Google Scholar 

  71. Sahai MA, Setiadi DH, Chass GA et al (2003) A model study of the IgA hinge region: an exploratory study of selected backbone conformations of MeCO-l-Pro-l-Thr-NH-Me. J Mol Struct THEOCHEM 666–667:311–319. doi:10.1016/j.theochem.2003.08.036

    Google Scholar 

  72. Sahai MA, Viskolcz B, Pai EF, Csizmadia IG (2007) Quantifying the intrinsic effects of two point mutation models of pro-pro-pro triamino acid diamide. A first-principle computational study. J Phys Chem B 111:13135–13142. doi:10.1021/jp074046r

    CAS  Google Scholar 

  73. Perczel A, Endrédi G, McAllister MA et al (1995) Peptide models VII the ending of the right-handed helices in oligopeptides [For-(Ala)n-NH2 for 2 ≤ n ≤ 4] and in proteins. J Mol Struct THEOCHEM 331:5–10. doi:10.1016/0166-1280(94)03972-N

    CAS  Google Scholar 

  74. Endrédi G, McAllister MA, Farkas Ö et al (1995) Peptide models XII Topological features of molecular mechanics and ab-initio 8D-Ramachandran maps. Conformational data for Ac-(l-Ala)4-NHMe and For-(l-Ala)4-NH2. J Mol Struct THEOCHEM 331:11–26. doi:10.1016/0166-1280(94)03915-8

    Google Scholar 

  75. Sahai MA, Sahai MR, Chass GA et al (2003) An ab initio exploratory study on selected conformational features of MeCO-l-Ala-l-Ala-l-Ala-NH-Me as a XxxYyyZzz tripeptide motif within a protein structure. J Mol Struct THEOCHEM 666–667:327–336. doi:10.1016/j.theochem.2003.08.041

    Google Scholar 

  76. Masman MF, Rodríguez AM, Svetaz L et al (2006) Synthesis and conformational analysis of His-Phe-Arg-Trp-NH2 and analogues with antifungal properties. Bioorg Med Chem 14:7604–7614. doi:10.1016/j.bmc.2006.07.007

    CAS  Google Scholar 

  77. Perczel A, Gáspári Z, Csizmadia IG (2005) Structure and stability of beta-pleated sheets. J Comput Chem 26:1155–1168. doi:10.1002/jcc.20255

    CAS  Google Scholar 

  78. Perczel A, Farkas Ö, Marcoccia JF, Csizmadia IG (1997) Peptide models. XIV. Ab initio study on the role of side-chain backbone interaction stabilizing the building unit of right- and left-handed helices in peptides and proteins. Int J Quantum Chem 61:797–814. doi:10.1002/(SICI)1097-461X(1997)61:5<797::AID-QUA6>3.0.CO;2-R

  79. Topol IA, Burt SK, Deretey E et al (2001) alpha- and 3(10)-helix interconversion: a quantum-chemical study on polyalanine systems in the gas phase and in aqueous solvent. J Am Chem Soc 123:6054–6060

    CAS  Google Scholar 

  80. Viskolcz B, Fejer SN, Knak Jensen SJ et al (2007) Information accumulation in helical oligopeptide structures. Chem Phys Lett 450:123–126. doi:10.1016/j.cplett.2007.11.001

    CAS  Google Scholar 

  81. Jákli I, Csizmadia IG, Fejer SN et al (2013) Helix compactness and stability: Electron structure calculations of conformer dependent thermodynamic functions. Chem Phys Lett 563:80–87. doi:10.1016/j.cplett.2013.01.060

    Google Scholar 

  82. Galant NJ, Wang H, Lee DR et al (2009) Thermodynamic role of glutathione oxidation by peroxide and peroxybicarbonate in the prevention of Alzheimer’s disease and cancer. J Phys Chem A 113:9138–9149. doi:10.1021/jp809116n

    CAS  Google Scholar 

  83. Ding VZY, Dawson SSH, Lau LWY et al (2011) A computational study of glutathione and its fragments: N-acetylcisteinylglycine and γ-glutamylmethylamide. Chem Phys Lett 507:168–173. doi:10.1016/j.cplett.2011.03.067

    CAS  Google Scholar 

  84. Fiser B, Szori M, Jójárt B et al (2011) Antioxidant potential of glutathione: a theoretical study. J Phys Chem B 115:11269–11277. doi:10.1021/jp2049525

    CAS  Google Scholar 

  85. Fiser B, Jójárt B, Csizmadia IG, Viskolcz B (2013) Glutathione–hydroxyl radical interaction: a theoretical study on radical recognition process. PLoS ONE 8:e73652. doi:10.1371/journal.pone.0073652

    CAS  Google Scholar 

  86. Veeravalli K, Boyd D, Iverson BL et al (2011) Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol 7:101–105. doi:10.1038/nchembio.499

    CAS  Google Scholar 

  87. Ganguly D, Srikanth CV, Kumar C et al (2003) Why is glutathione (a tripeptide) synthesized by specific enzymes while TSH releasing hormone (TRH or thyroliberin), also a tripeptide, is produced as part of a prohormone protein? IUBMB Life 55:553–554. doi:10.1080/15216540310001623064

    CAS  Google Scholar 

  88. Fahey RC, Sundquist AR (1991) Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol 64:1–53

    CAS  Google Scholar 

  89. Yi H, Ravilious GE, Galant A et al (2010) From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids 39:963–978. doi:10.1007/s00726-010-0572-9

    CAS  Google Scholar 

  90. Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. Funct Metab 319–368

    Google Scholar 

  91. Meuwly P, Thibault P, Rauser WE (1993) Gamma-glutamylcysteinylglutamic acid—a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472–476

    CAS  Google Scholar 

  92. Pálfi V, Perczel A (2008) How stable is a collagen triple helix? An ab initio study on various collagen and beta-sheet forming sequences. J Comput Chem 29(9):1374–1386

    Google Scholar 

  93. Bella J, Berman HM (1996) Crystallographic evidence for Cα–H···O=C hydrogen bonds in a collagen triple helix. J Mol Biol 264:734–742. doi:10.1006/jmbi.1996.0673

    CAS  Google Scholar 

  94. Henkelman RM, Stanisz GJ, Kim JK, Bronskill MJ (1994) Anisotropy of NMR properties of tissues. Magn Reson Med 32:592–601

    CAS  Google Scholar 

  95. Pálfi V, Perczel A (2010) Stability of the hydration layer of tropocollagen: a QM study. J Comput Chem 31(4):764–777

    Google Scholar 

  96. Masman MF, Eisel ULM, Csizmadia IG et al (2009) Model peptides for binding studies on peptide—peptide interactions: the case of amyloid β(1-42) aggregates. J Phys Chem A 113:11710–11719

    CAS  Google Scholar 

  97. Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13:202–208. doi:10.1038/nsmb1068

    CAS  Google Scholar 

  98. Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778. doi:10.1038/nature03680

    CAS  Google Scholar 

  99. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438:878–881

    CAS  Google Scholar 

  100. Beke T, Csizmadia IG, Perczel A (2006) Theoretical study on tertiary structural elements of beta-peptides: nanotubes formed from parallel-sheet-derived assemblies of beta-peptides. J Am Chem Soc 128:5158–5167. doi:10.1021/ja0585127

    CAS  Google Scholar 

  101. Czajlik A, Perczel A (2004) Peptide models XXXII. Computed chemical shift analysis of penetratin fragments. J Mol Struct THEOCHEM 675:129–139. doi:10.1016/j.theochem.2003.12.036

    CAS  Google Scholar 

  102. Salpietro SJ, Viskolcz B, Csizmadia IG (2003) An exploratory ab initio study on the entropy of various backbone conformers for the HCO-Gly-Gly-Gly-NH2 tripeptide motif. J Mol Struct THEOCHEM 666–667:89–94. doi:10.1016/j.theochem.2003.08.016

    Google Scholar 

  103. Viskolcz B, Fejer SN, Csizmadia IG (2006) J Phys Chem A 110:3808

    CAS  Google Scholar 

  104. Fejer SN, Csizmadia IG, Viskolcz B (2006) Thermodynamic functions of conformational changes: conformational network of glycine diamide folding, entropy lowering, and informational accumulation. J Phys Chem A 110:13325–13331. doi:10.1021/jp065595k

    CAS  Google Scholar 

  105. Pohl G, Jákli I, Csizmadia IG et al (2012) The role of entropy in initializing the aggregation of peptides: a first principle study on oligopeptide oligomerization. Phys Chem Chem Phys 14:1507

    CAS  Google Scholar 

  106. Hudáky I, Hudáky P, Perczel A (2004) Solvation model induced structural changes in peptides. A quantum chemical study on Ramachandran surfaces and conformers of alanine diamide using the polarizable continuum model. J Comput Chem 25:1522–1531. doi:10.1002/jcc.20073

    Google Scholar 

  107. Hudáky P, Perczel A (2004) Conformation dependence of pKa: Ab initio and DFT investigation of histidine. J Phys Chem A 108:6195–6205. doi:10.1021/jp048964q

    Google Scholar 

  108. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. doi:10.1038/nrd1330

    CAS  Google Scholar 

  109. Owen MC, Szori M, Csizmadia IG, Viskolcz B (2012) Conformation-dependent ˙OH/H2O2 hydrogen abstraction reaction cycles of Gly and Ala residues: a comparative theoretical study. J Phys Chem B 116:1143–1154. doi:10.1021/jp2089559

    CAS  Google Scholar 

  110. Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246. doi:10.1016/j.expneurol.2009.03.006

    Google Scholar 

  111. Easton CJ (1997) Free-radical reactions in the synthesis of alpha-amino acids and derivatives. Chem Rev 97:53–82

    CAS  Google Scholar 

  112. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258. doi:10.1080/10715760600918142

    CAS  Google Scholar 

  113. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    CAS  Google Scholar 

  114. Gregersen N, Bolund L, Bross P (2005) Protein misfolding, aggregation, and degradation in disease. Mol Biotechnol 31:141–150. doi:10.1385/MB:31:2:141

    CAS  Google Scholar 

  115. Harris E (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683

    CAS  Google Scholar 

  116. Shapira R, Chou CH (1987) Differential racemization of aspartate and serine in human myelin basic protein. Biochem Biophys Res Commun 146:1342–1349

    CAS  Google Scholar 

  117. Masters PM (1983) Stereochemically altered noncollagenous protein from human dentin. Calcif Tissue Int 35:43–47

    CAS  Google Scholar 

  118. Fujii N (2005) D-amino acid in elderly tissues. Biol Pharm Bull 28:1585–1589

    CAS  Google Scholar 

  119. Shapiro SD, Endicott SK, Province MA et al (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834. doi:10.1172/JCI115204

    CAS  Google Scholar 

  120. Gerlei KZ, Élo L, Fiser B et al (2014) Impairment of a model peptide by oxidative stress: thermodynamic stabilities of asparagine diamide Cα-radical foldamers. Chem Phys Lett 593:104–108

    CAS  Google Scholar 

  121. Owen MC, Viskolcz B, Csizmadia IG (2011) Quantum chemical analysis of the unfolding of a penta-glycyl 3(10)-helix initiated by HO(•), HO2(•), and O2(-•). J Chem Phys 135:035101. doi:10.1063/1.3608168

    Google Scholar 

  122. Czajlik A, Meskó E, Penke B, Perczel A (2002) Investigation of penetratin peptides. Part 1. The environment dependent conformational properties of penetratin and two of its derivatives. J Pept Sci 8:151–171. doi:10.1002/psc.380

    CAS  Google Scholar 

  123. Smirnov AY, Savel’ev S, Mourokh LG, Nori F (2007) Modelling chemical reactions using semiconductor quantum dots. Europhys Lett 80:67008. doi:10.1209/0295-5075/80/67008

    Google Scholar 

  124. Aspuru-Guzik A, Dutoi AD, Love PJ, Head-Gordon M (2005) Simulated quantum computation of molecular energies. Science 309:1704–1707. doi:10.1126/science.1113479

    CAS  Google Scholar 

  125. Kassal I, Jordan SP, Love PJ et al (2008) Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc Natl Acad Sci USA 105:18681–18686. doi:10.1073/pnas.0808245105

    CAS  Google Scholar 

  126. Kassal I, Whitfield JD, Perdomo-Ortiz A et al (2011) Simulating chemistry using quantum computers. Annu Rev Phys Chem 62:185–207. doi:10.1146/annurev-physchem-032210-103512

    CAS  Google Scholar 

  127. Wang H, Ashhab S, Nori F (2009) Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer. Phys Rev A 79:042335. doi:10.1103/PhysRevA.79.042335

    Google Scholar 

  128. Lu D, Xu N, Xu R et al (2011) Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator. Phys Rev Lett 107:20501

    Google Scholar 

  129. Lidar DA, Wang H (1999) Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys Rev E 59:2429–2438

    CAS  Google Scholar 

  130. Perdomo A, Truncik C, Tubert-Brohman I et al (2008) Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Phys Rev A 78:12320

    Google Scholar 

  131. Floudas CA, Pardalos PM (2000) Optimization in computational chemistry and molecular biology: local and global approaches. Kluwer Academic Publication, Berlin

    Google Scholar 

  132. Alexander K. Hartmann HR (2004) New optimization algorithms in physics

    Google Scholar 

  133. Kolinski A, Skolnick J (1996) Lattice models of protein folding. Dynamics and thermodynamics. Chapman & Hall, Austin

    Google Scholar 

  134. Mirny L, Shakhnovich E (2001) Protein folding theory: from lattice to all-atom models. Annu Rev Biophys Biomol Struct 30:361–396. doi:10.1146/annurev.biophys.30.1.361

    CAS  Google Scholar 

  135. Pande VS, Grosberg AY, Tanaka T (2000) Heteropolymer freezing and design: towards physical models of protein folding. Rev Mod Phys 72:259–314

    CAS  Google Scholar 

  136. Hart WE, Istrail S (1997) Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. J Comput Biol 4:1–22

    CAS  Google Scholar 

  137. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316. doi:10.1146/annurev.biophys.37.092707.153558

    CAS  Google Scholar 

  138. Lau KF, Dill KA (1989) A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22:3986–3997. doi:10.1021/ma00200a030

    CAS  Google Scholar 

  139. Epstein CJ, Goldberger RF, Anfinsen CB (1963) The genetic control of tertiary protein structure: studies with model systems. Cold Spring Harb Symp Quant Biol 28:439–449. doi:10.1101/SQB.1963.028.01.060

    CAS  Google Scholar 

  140. Crescenzi P, Goldman D, Papadimitriou C et al (1998) On the complexity of protein folding. J Comput Biol 5:423–465

    CAS  Google Scholar 

  141. Amin MHS, Choi V (2009) First-order quantum phase transition in adiabatic quantum computation. Phys Rev A 80:062326. doi:10.1103/PhysRevA.80.062326

    Google Scholar 

  142. Farhi E, Goldstone J (2009) Quantum adiabatic algorithms, small gaps, and different paths. Comput Res Repos—CORR

    Google Scholar 

  143. Perdomo-Ortiz A, Venegas-Andraca SE, Aspuru-Guzik A (2010) A study of heuristic guesses for adiabatic quantum computation. Quantum Inf Process 10:33–52. doi:10.1007/s11128-010-0168-z

    Google Scholar 

  144. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134. doi:10.1021/ja00467a001

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Hungarian Scientific Research Fund (grant numbers: OTKA NK101072 and TÁMOP-4.2.2.A-11/1/KONV-2012-0047. TÁMOP-4.2.1.B-09/1/KMR). This work was also supported by the following NDA grants: TÁMOP-4.2.2.C-11/1/KONV-2012-0010, TÁMOP-4.2.2.A-11/1/KONV-2012-0047. The authors thank M. Labádi and L. Müller for the administration of the computer clusters used for this work. Technical assistances of Anita Rágyanszki, Klára Gerlei, Kyungseop Lee and Csaba Hatvani are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Jákli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jákli, I., Perczel, A., Viskolcz, B., Csizmadia, I.G. (2014). Quantum Chemical Calculations on Small Protein Models. In: Náray-Szabó, G. (eds) Protein Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-09976-7_2

Download citation

Publish with us

Policies and ethics