Skip to main content

Policy Implications and Future Challenges

  • Chapter
  • First Online:
Low-tech Innovation

Abstract

The findings on the innovation capabilities and practices of non-R&D-performing and non-R&D-intensive companies have implications for German science and technology policy. The goal of this chapter is to outline those potential implications. The chapter begins with an assessment of the current role of non-R&D-intensive (“low-tech”) industries in German innovation and technology policymaking. Based on the shortcomings identified in this book, this chapter outlines how the frequently overlooked innovation potential of non-R&D-intensive industries and firms could increasingly attract the attention of policy makers to support more comprehensive policies that promote and strengthen innovation in German industries

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is hereby reasonably implied that the vehicle manufacturing industry, which is not available in a more detailed classification in the BMBF database, is a composite with equal shares of road vehicles, locomotives and ship builders on the one hand and air and spacecraft manufacturers on the other hand.

  2. 2.

    Between 2004 and 2006, Anthony Arundel and his colleagues at UNU-MERIT interviewed 67 members of the policy community – 55 from 15 European countries and 12 from Canada, Japan, Australia and New Zealand – on their use of and need for innovation indicators. R&D indicators were the most widely used and were considered to be the most valuable. By contrast, only a minority of respondents referred to the use of indicators drawn from the CIS or similar innovation surveys in policy making or evaluation (Arundel 2007).

  3. 3.

    However, the underlying theoretical reasoning and the measurement strategy of the Lisbon Agenda are closely tied to R&D intensity (Hahn 2007; Hirsch-Kreinsen 2008).

  4. 4.

    Grupp (2008 ) also campaigns for a functional rather than deterministic understanding of the relationship between R&D and innovation. In this view, R&D serves as a tool for solving problems that may occur in each stage of the innovation process (idea, theory, discovery/technical design/product design, innovation/imitation, improvement, diffusion, exploitation, and disposal) that cannot be solved by drawing on the existing stock of knowledge and experiences alone. “But innovation is possible without R&D if the knowledge stock available to the firm and in the published science is sufficient.”

  5. 5.

    An initial attempt to shift European innovation policy from a solely R&D-based view to a broader understanding of innovation can be found in the recent EU 2020 strategy: “It is also clear that by looking at R&D and innovation together we would get a broader range of expenditure which would be more relevant for business operations and for productivity drivers. The Commission proposes to keep the 3 % target while developing an indicator which would reflect R&D and innovation intensity” (European Commission 2010).

References

  • Arundel, A. (2007). Innovation survey indicators: What impact on innovation policy? In Science, technology and innovation indicators in a changing world: Responding to policy needs (pp. 49–64). Paris: OECD publishing.

    Google Scholar 

  • Arundel, A. (1997). Why innovation measurement matters. In A. Arundel & R. Garrelfs (Eds.), Innovation measurement and policies. Luxemburg, EU: EIMS 94/197.

    Google Scholar 

  • Arundel, A., Bordoy, C., & Kanerva, M. (2008). Neglected innovators: How do innovative firms that do not perform R&D innovate? Results of an analysis of the Innobarometer 2007 survey No. 215. INNO-Metrics Thematic Paper.

    Google Scholar 

  • BDI. (2014). http://www.bdi.eu/Steuerliche-Forschungsforderung.htm. Accessed 8 May 2014.

  • BMBF. (2010). Ideen. Innovation. Wachstum, Hightech-Strategie 2020 für Deutschland, Bonn, Berlin.

    Google Scholar 

  • BMBF. (2012). Bundesbericht Forschung und Innovation 2012. Bonn, Berlin.

    Google Scholar 

  • BMBF. (2013). KMU-innovativ – Vorfahrt für Spitzenforschung im Mittelstand. Berlin.

    Google Scholar 

  • BMWi. (2014). Zentrales Innovationsprogramm Mittelstand – Impulse für Innovationen 2/2014. Berlin.

    Google Scholar 

  • David, P. (1996). Science reorganized? Postmodern visions of research and the curse of success. MERIT Research Memoranda, Nr. 2-96-002. http://www.merit.unu.edu/publications/rmpdf/1996/rm1996-002.pdf. Accessed 13 June 2010.

  • Destatis. (2008). Statistisches Bundesamt. Wiesbaden: Klassifikation der Wirtschaftszweige. Mit Erläuterungen.

    Google Scholar 

  • Dodgson, M. (2000). The management of technological innovation. Oxford: Oxford University Press.

    Google Scholar 

  • Dortans, P. (2009). Innovation positioning system. VDI/VDE-IT. Plädoyer gegen die Einführung einer steuerlichen FuE-Förderung. Berlin.

    Google Scholar 

  • Edquist, C., & Texier, F. (1998). Innovations, systems and European integration (ISE). Linköping: Linköping University.

    Google Scholar 

  • EFI Expertenkommission Forschung und Innovation (Ed.). (2014). Gutachten zu Forschung, Innovation und Technologischer Leistungsfähigkeit Deutschlands. Berlin: EFI.

    Google Scholar 

  • European Commission. (2010). Europe 2020 – A strategy for smart, sustainable and inclusive growth. European Commission, Brussels. http://ec.europa.eu/eu2020/pdf/COMPLET%20EN%20BARROSO%20%20%20007%20-%20Europe%202020%20-%20EN%20version.pdf. Accessed 17 Aug 2010.

  • Expertenkommission Forschung und Innovation (EFI). (Eds.) (2011). Gutachten zu Forschung, Innovation und technologischer Leistungsfähigkeit Deutschlands 2011, Berlin.

    Google Scholar 

  • Foray, D. (1998). The economics of knowledge openness: Emergence, persistence and change of conventions in the knowledge systems. In N. Lazaric & E. Lorenz (Eds.), Trust in economic learning (pp. 162–189). London: Edward Elgar.

    Google Scholar 

  • Foray, D. (2006). The economics of knowledge. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Freeman, C. (1994b). Innovation and growth. In M. Dodgson & R. Rothwell (Eds.), The handbook of industrial innovation. Gower House et al. (pp. 78–93). Cheltenham: Edward Elgar.

    Google Scholar 

  • Frietsch, R., & Kroll, H. (2010). Recent trends in innovation policy in Germany. In R. Frietsch & M. Schüller (Eds.), Competing for global innovation leadership: Innovation systems and policies in the USA, Europe and Asia (pp. 73–92). Stuttgart: Fraunhofer Verlag.

    Google Scholar 

  • Gehrke, B., Schasse, U., Kladroba, A., & Stenke, G. (2013). FuE-Aktivitäten von Wirtschaft und Staat im internationalen Vergleich. In Expertenkommission Forschung und Innovation (EFI) (Eds.), Studien zum deutschen Innovationssystem 2/2013, Berlin.

    Google Scholar 

  • Godin, B. (2004). The obsession for competitiveness and its impact on statistics: The construction of high-technology indicators. Working Paper Nr. 25, Project on the History and Sociology of S&T Statistics. Montréal, Canadian Science and Innovation Indicators Consortium (CSIIC).

    Google Scholar 

  • Godin, B. (2006). The linear model of innovation: The historical construction of an analytical framework. Project on the history and sociology of S&T statistics. Science, Technology, and Human Values, 31(6), 639–667.

    Article  Google Scholar 

  • Grupp, H. (2008). Critical comments on the ‘moral economy of technology indicators’. In H. Hirsch-Kreinsen & D. Jacobson (Eds.), Innovation in low-tech firms and industries (pp. 85–90). Cheltenham, UK/Northampton, MA: Edwaed Elgar.

    Google Scholar 

  • Hahn, K. (2007). Der Lissabon-Prozess: Das Innovationskonzept und die Auswirkungen auf die Politikgestaltung. Soziologisches Arbeitspapier Nr. 20/2007, Technische Universität Dortmund.

    Google Scholar 

  • Hirsch-Kreinsen, H. (2005). Low-Tech-Industrien: Innovationsfähigkeit und Entwicklungschancen. WSI Mitteilungen, 3(2005), 144–150.

    Google Scholar 

  • Hirsch-Kreinsen, H. (2008). Innovationspolitik: Die Hightech-Obsession. Soziologisches Arbeitspapier Nr. 22/2008, TU Dortmund.

    Google Scholar 

  • Hülskamp, N., & Koppel, O. (2006). Förderung unternehmerischer Innovation in Deutschland. Eckpunkte einer Neuausrichtung. München: Roman Herzog Institut.

    Google Scholar 

  • Kline, S. J., & Rosenberg, N. (1986). An overview of innovation. In R. Landau & N. Rosenberg (Eds.), The positive sum strategy. Harnessing technology for economic growth (pp. 275–305). Washington D.C.: National Academy Press.

    Google Scholar 

  • Kulicke, M., Becker, C., Berteit, H., Hufnagl, M., Grebe, T., Kirbach, M., et al. (2010). Evaluierung des Programmstarts und der Durchführung des Zentralen Innovationsprogramms Mittelstand (ZIM). Stuttgart: Fraunhofer-Verlag.

    Google Scholar 

  • Legler, H., & Frietsch, R. (2007). Neuabgrenzung der Wissenswirtschaft – forschungsintensive Industrien und wissensintensive Dienstleistungen. In BMBF (Eds.), Studien zum deutschen Innovationssystem 22/2007, Berlin: BMBF.

    Google Scholar 

  • Lundvall, B. Â., & Johnson, B. (1994). The learning economy. Journal of Industry Studies, 1(2), 23–42.

    Article  Google Scholar 

  • Nelson, R. R. (2000). National innovation systems. In Z. J. Acs (Ed.), Regional innovation, knowledge and global change (pp. 11–26). London/New York: Pinter Publishers.

    Google Scholar 

  • OECD. (2012). Science, technology and industry outlook 2012. Paris: OECD Publishing.

    Book  Google Scholar 

  • Rammer, C., Köhler, C., Murmann, M., Pesau, A., Schwiebacher, F., Kinkel, S., et al. (2011). Innovation ohne Forschung und Entwicklung. Eine Untersuchung zu Unternehmen, die ohne eigene FuE-Tätigkeit neue Produkte und Prozesse einführen. Studien zum deutschen Innovationssystem, Nr. 15/2011. Mannheim und Karlsruhe.

    Google Scholar 

  • Raymond, L., & St-Pierre, J. (2010). R&D as a determinant of innovation in manufacturing SMEs: An attempt at empirical clarification. Technovation, 30, 48–56.

    Article  Google Scholar 

  • Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002–1037.

    Article  Google Scholar 

  • Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), 71–102.

    Article  Google Scholar 

  • Rosenberg, N. (1994). Exploring the black box: technology, economics, and history. New York: Cambridge University Press.

    Book  Google Scholar 

  • Rothwell, R. (2003). Towards the fifth-generation innovation process. In O. Jones & F. Tilley (Eds.), Competitive advantage in SMEs. Organising for innovation and change (pp. 115–135). Chichester: Wiley.

    Google Scholar 

  • Schmiedeberg, C. (2008). Complementarities of innovation activities: An empirical analysis of the German manufacturing sector. Research Policy, 37, 1492–1503.

    Article  Google Scholar 

  • Smith, K. (2005). Measuring innovation. In J. Fagerberg, D. Mowery, & R. R. Nelson (Eds.), The oxford handbook of innovation (pp. 148–177). Oxford: Oxford University Press.

    Google Scholar 

  • Som, O., Kinkel, S., Kirner, E., Buschak, D., Frietsch, R., Jäger, A., et al. (2010). Zukunftspotenziale und Strategien nichtforschungsintensiver Industriebereiche in Deutschland – Auswirkungen auf Wettbewerbsfähigkeit und Beschäftigung. Innovationsreport Nr. 140 des Büros für Technikfolgen-Abschätzung beim Deutschen Bundestag. Berlin.

    Google Scholar 

  • Statistisches Bundesamt (2013). Statistisches Jahrbuch 2013. Wiesbaden: Statistisches Bundesamt.

    Google Scholar 

  • Stifterverband für die Deutsche Wissenschaft. (2013). FuE Datenreport 2013 – Tabellen und Daten. Essen: Wissenschaftsstatistik GmbH im Stifterverband für die Deutsche Wissenschaft.

    Google Scholar 

  • Tidd, J., & Bessant, J. (2009). Managing innovation. Integrating technological, market and organizational change (4th ed.). Chichester: Wiley.

    Google Scholar 

  • Verspagen, B. (2005). Innovation and economic growth. In J. Fagerberg, D. C. Mowery, & R. R. Nelson (Eds.), The oxford handbook of innovation (pp. 487–513). New York: Oxford University Press.

    Google Scholar 

  • Zentrum für Europäische Wirtschaftsforschung (ZEW), Max-Planck-Gesellschaft, Institut der deutschen Wirtschaft (2009). Arbeitsgruppe Steuerliche FuE-Förderung der Forschungsunion Wirtschaft – Wissenschaft: Deutliches Votum für die Einführung einer steuerlichen Förderung von Forschung und Entwicklung (FuE) in Deutschland. Mannheim, München, Köln.

    Google Scholar 

  • ZEW, Prognos, IfM. (2011). Begleit- und Wirkungsforschung zur Hightech-Strategie – Systemevaluierung “KMU-innovativ” 13.12.2011. Mannheim, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Som .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lay, G., Som, O. (2015). Policy Implications and Future Challenges. In: Som, O., Kirner, E. (eds) Low-tech Innovation. Springer, Cham. https://doi.org/10.1007/978-3-319-09973-6_11

Download citation

Publish with us

Policies and ethics