Skip to main content

Snapshots of Conformal Field Theory

  • Chapter
  • First Online:
Book cover Mathematical Aspects of Quantum Field Theories

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

In snapshots, this exposition introduces conformal field theory, with a focus on those perspectives that are relevant for interpreting superconformal field theory by Calabi-Yau geometry. It includes a detailed discussion of the elliptic genus as an invariant which certain superconformal field theories share with the Calabi-Yau manifolds. K3 theories are (re)viewed as prime examples of superconformal field theories where geometric interpretations are known. A final snapshot addresses the K3-related Mathieu Moonshine phenomena, where a lead role is predicted for the chiral de Rham complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ademollo, L. Brink, A. D’Adda, R. D’Auria, E. Napolitano, S. Sciuto, E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Pettorino, Supersymmetric strings and color confinement. Phys. Lett. B 62, 105–110 (1976)

    Article  ADS  Google Scholar 

  2. L. Alvarez-Gaumé, D. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric \(\sigma \)-model. Commun. Math. Phys. 80(3), 443–451 (1981)

    Article  ADS  Google Scholar 

  3. P. Aspinwall, D. Morrison, String theory on K3 surfaces, in Mirror symmetry II, ed. by B. Greene, S. Yau, AMS (1994) pp. 703–716

    Google Scholar 

  4. M. Atiyah, R. Bott, V. Patodi, On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973). Errata: Invent. Math. 28, 277–280 (1975)

    Google Scholar 

  5. M. Atiyah, I. Singer, The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc. 69, 322–433 (1963)

    Article  MathSciNet  Google Scholar 

  6. W. Barth, K. Hulek, C. Peters, A. van de Ven, Compact Complex Surfaces, 2nd edn. (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  7. A. Belavin, A. Polyakov, A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Ben-Zvi, R. Heluani, M. Szczesny, Supersymmetry of the chiral de Rham complex. Compos. Math. 144(2), 503–521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Borcherds, Vertex algebras, Kac-Moody algebras and the monster. Proc. Natl. Acad. Sci. U.S.A. 83, 3068–3071 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Borisov, Vertex algebras and mirror symmetry. Commun. Math. Phys. 215(2), 517–557 (2001)

    Article  ADS  MATH  Google Scholar 

  11. L. Borisov, A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry. Invent. Math. 140(2), 453–485 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L. Borisov, A. Libgober, Elliptic genera of singular varieties. Duke Math. J. 116(2), 319–351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Boucher, D. Friedan, A. Kent, Determinant formulae and unitarity for the \({N}=2\) superconformal algebras in two dimensions or exact results on string compactification. Phys. Lett. B 172, 316–322 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. P. Candelas, X. de la Ossa, P. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  ADS  MATH  Google Scholar 

  15. P. Candelas, M. Lynker, R. Schimmrigk, Calabi-Yau manifolds in weighted P(4). Nucl. Phys. B 341, 383–402 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Cardy, Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270(2), 186–204 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Casher, F. Englert, H. Nicolai, A. Taormina, Consistent superstrings as solutions of the \(d=26\) bosonic string theory. Phys. Lett. B 162, 121–126 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Cecotti, \({N}=2\) Landau-Ginzburg versus Calabi-Yau \(\sigma \)-models: non-perturbative aspects. Int. J. Mod. Phys. A 6, 1749–1813 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Cheng, K3 surfaces, \(N=4\) dyons, and the Mathieu group \(M_{24}\). Commun. Number Theory Phys. 4, 623–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Conway, S. Norton, Monstrous moonshine. Bull. London Math. Soc. 11(3), 308–339 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Creutzig, G. Höhn, Mathieu Moonshine and the Geometry of K3 Surfaces (arXiv:1309.2671 [math.QA])

  22. A. Dabholkar, S. Murthy, D. Zagier, Quantum black holes, wall crossing and mock modular forms (arXiv:1208.4074 [hep-th])

  23. P. Di Francesco, S. Yankielowicz, Ramond sector characters and \({N}=2\) Landau-Ginzburg models. Nucl. Phys. B 409, 186–210 (1993)

    Article  ADS  MATH  Google Scholar 

  24. P. Di Vecchia, J. Petersen, M. Yu, H. Zheng, Explicit construction of unitary representations of the \({N}=2\) superconformal algebra. Phys. Lett. B 174, 280–295 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Dijkgraaf, G. Moore, E. Verlinde, H. Verlinde, Elliptic genera of symmetric products and second quantized strings. Commun. Math. Phys. 185, 197–209 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. L. Dixon, Some world-sheet properties of superstring compactifications, on orbifolds and otherwise, in Superstrings, unified theories and cosmology 1987 (Trieste, 1987), ICTP Ser. Theoret. Phys., vol. 4, pp. 67–126. World Sci. Publ., Teaneck, NJ (1988)

    Google Scholar 

  27. T. Eguchi, K. Hikami, Superconformal algebras and mock theta functions 2. Rademacher expansion for K3 surface. Commun. Number Theory Phys. 3, 531–554 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Eguchi, K. Hikami, Note on twisted elliptic genus of K3 surface. Phys. Lett. B 694, 446–455 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. T. Eguchi, H. Ooguri, Y. Tachikawa, Notes on the \(K3\) surface and the Mathieu group \(M_{24}\). Exp. Math. 20(1), 91–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Eguchi, H. Ooguri, A. Taormina, S.K. Yang, Superconformal algebras and string compactification on manifolds with \({SU}(n)\) holonomy. Nucl. Phys. B 315, 193–221 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Eguchi, A. Taormina, Unitary representations of the \({N}=4\) superconformal algebra. Phys. Lett. B 196, 75–81 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Eguchi, A. Taormina, Character formulas for the \({N}=4\) superconformal algebra. Phys. Lett. B 200, 315–322 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Eguchi, A. Taormina, Extended superconformal algebras and string compactifications, in Trieste School 1988: Superstrings, pp. 167–188 (1988)

    Google Scholar 

  34. T. Eguchi, A. Taormina, On the unitary representations of \({N}=2\) and \({N}=4\) superconformal algebras. Phys. Lett. 210, 125–132 (1988)

    Article  MathSciNet  Google Scholar 

  35. T. Eguchi, S.K. Yang, N=2 superconformal models as topological field theories. Mod. Phys. Lett. A 5, 1693–1701 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics (Birkhäuser, Boston, 1985)

    Book  Google Scholar 

  37. G. Felder, J. Fröhlich, G. Keller, On the structure of unitary conformal field theory. I. existence of conformal blocks. Commun. Math. Phys. 124(3), 417–463 (1989)

    Article  ADS  MATH  Google Scholar 

  38. E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, 2nd edn., Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2004)

    MATH  Google Scholar 

  39. E. Frenkel, V. Kac, A. Radul, W. Wang, \(W(1+\infty )\) and \(W(gl(N))\) with central charge \(N\). Commun. Math. Phys. 170(2), 337–357 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. E. Frenkel, M. Szczesny, Chiral de Rham complex and orbifolds. J. Algebr. Geom. 16(4), 599–624 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Frenkel, V. Kac, Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62(1), 23–66 (1980/81)

    Google Scholar 

  42. I. Frenkel, J. Lepowsky, A. Meurman, A natural representation of the Fischer-Griess monster with the modular function \(J\) as character. Proc. Natl. Acad. Sci. U.S.A. 81, 3256–3260 (1984). (10, Phys. Sci.)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. Fröhlich, K. Gawȩdzki, Conformal field theory and geometry of strings, in Mathematical quantum theory. I. Field theory and many-body theory (Vancouver, BC, 1993), pp. 57–97. Amer. Math. Soc., Providence (1994)

    Google Scholar 

  44. M. Gaberdiel, S. Hohenegger, R. Volpato, Mathieu moonshine in the elliptic genus of K3. JHEP 1010, 062 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Gaberdiel, S. Hohenegger, R. Volpato, Mathieu twining characters for K3. JHEP 1009, 058 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Gaberdiel, S. Hohenegger, R. Volpato, Symmetries of K3 sigma models. Commun. Number Theory Phys. 6, 1–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Gaberdiel, D. Persson, H. Ronellenfitsch, R. Volpato, Generalised Mathieu Moonshine. Commun. Number Theory Phys. 7(1), 145–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Gaberdiel, D. Persson, R. Volpato, Generalised Moonshine and Holomorphic Orbifolds (arXiv:1302.5425 [hep-th])

  49. T. Gannon, Moonshine Beyond The Monster - The Bridge Connecting Algebra, Modular Forms and Physics, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  50. T. Gannon, Much ado about Mathieu (arXiv:1211.5531 [math.RT])

  51. E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem. Commun. Math. Phys. 92(2), 163–178 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. P. Gilkey, Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds. Adv. Math. 11, 311–325 (1973)

    Article  MathSciNet  Google Scholar 

  53. P. Ginsparg, Applied conformal field theory, in Lectures given at the Les Houches Summer School in Theoretical Physics 1988, pp. 1–168. Les Houches, France (1988)

    Google Scholar 

  54. P. Goddard, A. Kent, D. Olive, Virasoro algebra and coset space models. Phys. Lett. B 152, 88–101 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. P. Goddard, A. Kent, D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103, 105–119 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. V. Gorbounov, F. Malikov, Vertex algebras and the Landau-Ginzburg/Calabi-Yau correspondence. Mosc. Math. J. 4(3), 729–779 (2004)

    MathSciNet  MATH  Google Scholar 

  57. B. Greene, M. Plesser, Duality in Calabi-Yau moduli space. Nucl. Phys. B 338, 15–37 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  58. F. Hirzebruch, Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Nat. Acad. Sci. U.S.A. 40, 110–114 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. F. Hirzebruch, Topological methods in algebraic geometry, Grundl. Math. Wiss., vol. 131, Springer, Heidelberg (1966)

    Google Scholar 

  60. F. Hirzebruch, Elliptic genera of level \(N\) for complex manifolds, in Differential geometric methods in theoretical physics, ed. by K. Bleuler, M. Werner, pp. 37–63. Kluwer Acad. Publ. (1988)

    Google Scholar 

  61. V. Kac, Vertex Algebras for Beginners, 2nd edn., University Lecture Series (American Mathematical Society, Providence, 1998)

    MATH  Google Scholar 

  62. A. Kapustin, Chiral de Rham complex and the half-twisted sigma-model (hep-th/0504074)

  63. A. Kapustin, D. Orlov, Vertex algebras, mirror symmetry, and D-branes: the case of complex tori. Commun. Math. Phys. 233(1), 79–136 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. S. Kondo, Niemeier lattices, Mathieu groups and finite groups of symplectic automorphisms of K3 surfaces. Duke Math. J. 92, 593–603 (1998) (Appendix by S. Mukai)

    Google Scholar 

  65. I. Krichever, Generalized elliptic genera and Baker-Akhiezer functions. Math. Notes 47, 132–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  66. P. Landweber, Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  67. J. Lepowsky, R. Wilson, Construction of the affine Lie algebra \(A_{1}^{{}}(1)\). Commun. Math. Phys. 62(1), 43–53 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. W. Lerche, C. Vafa, N. Warner, Chiral rings in \({N}=2\) superconformal theories. Nucl. Phys. B 324, 427–474 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  69. B. Lian, A. Linshaw, Chiral equivariant cohomology I. Adv. Math. 209(1), 99–161 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. F. Malikov, V. Schechtman, A. Vaintrob, Chiral de Rham complex. Commun. Math. Phys. 204(2), 439–473 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Y. Manin, Presentation of the Fields medal and a special tribute. IMU Bulletin 43, (1998)

    Google Scholar 

  72. H. McKean, I. Singer, Curvature and the eigenvalues of the Laplacian. J. Diff. Geom. 1, 43–69 (1967)

    MathSciNet  MATH  Google Scholar 

  73. S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94, 183–221 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. W. Nahm, A proof of modular invariance. Int. J. Mod. Phys. A 6(16), 2837–2845 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. W. Nahm, K. Wendland, A hiker’s guide to K3 - aspects of \({N}=(4,4)\) superconformal field theory with central charge \(c=6\). Commun. Math. Phys. 216, 85–138 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. K. Narain, New heterotic string theories in uncompactified dimensions \(<10\). Phys. Lett. B 169, 41–46 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  77. H. Ooguri, Superconformal symmetry and geometry of Ricci flat Kahler manifolds. Int. J. Mod. Phys. A 4, 4303–4324 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  78. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281–305 (1975). (With an appendix by Stephen Summers)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. V. Patodi, An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. of Diff. Geometry 5, 251–283 (1971)

    MathSciNet  MATH  Google Scholar 

  81. Z. Qiu, Modular invariant partition functions for \({N}=2\) superconformal field theories. Phys. Lett. B 198, 497–502 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  82. M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, 2nd edn., Lecture Notes in Physics (Springer, Berlin, 2008)

    MATH  Google Scholar 

  83. N. Seiberg, Observations on the moduli space of superconformal field theories. Nucl. Phys. B 303, 286–304 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  84. A. Taormina, The \({N}=2\) and \({N}=4\) superconformal algebras and string compactifications, in Mathematical physics (Islamabad, 1989), pp. 349–370. World Scientific Publishing, Singapore (1990)

    Google Scholar 

  85. A. Taormina, K. Wendland, The overarching finite symmetry group of Kummer surfaces in the Mathieu group \(M_{24}\). JHEP 08, 125 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  86. A. Taormina, K. Wendland, Symmetry-surfing the moduli space of Kummer K3s (arXiv:1303.2931 [hep-th])

  87. A. Taormina, K. Wendland, A twist in the \(M_{24}\) moonshine story (arXiv:1303.3221 [hep-th])

  88. J. Thompson, Finite groups and modular functions. Bull. London Math. Soc. 11(3), 347–351 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Thompson, Some numerology between the Fischer-Griess monster and the elliptic modular function. Bull. London Math. Soc. 11(3), 352–353 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  90. A. Wassermann, Operator algebras and conformal field theory, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 966–979. Birkhäuser, Basel (1995)

    Google Scholar 

  91. K. Wendland, Conformal field theory for mathematicians. Book manuscript based on lecture notes for an MSc course taught by the author, currently 210 p.

    Google Scholar 

  92. K. Wendland, Moduli spaces of unitary conformal field theories. Ph.D. thesis, University of Bonn (2000)

    Google Scholar 

  93. K. Wendland, Orbifold constructions of \({K}3\): A link between conformal field theory and geometry, in Orbifolds in Mathematics and Physics, Contemporary Mathematics, vol. 310, pp. 333–358. AMS, Providence (2002)

    Google Scholar 

  94. K. Wendland, On the geometry of singularities in quantum field theory, in Proceedings of the International Congress of Mathematicians, Hyderabad, 19–27 August 2010, pp. 2144–2170. Hindustan Book Agency (2010)

    Google Scholar 

  95. E. Witten, Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253–316 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  96. E. Witten, Elliptic genera and quantum field theory. Commun. Math. Phys. 109, 525–536 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. E. Witten, The index of the Dirac operator in loop space, in Elliptic curves and modular forms in algebraic geometry, ed. by P. Landweber, pp. 161–181. Springer (1988)

    Google Scholar 

  98. E. Witten, Topological sigma models. Commun. Math. Phys. 118, 411–449 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. E. Witten, Mirror manifolds and topological field theory, in Essays on mirror manifolds, pp. 120–158. International Press, Hong Kong (1992)

    Google Scholar 

  100. E. Witten, On the Landau-Ginzburg description of \({N}=2\) minimal models. Int. J. Mod. Phys. A 9, 4783–4800 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. A. Zamolodchikov, V. Fateev, Disorder fields in two-dimensional conformal quantum field theory and \({N}=2\) extended supersymmetry. Sov. Phys. JETP 63, 913–919 (1986)

    Google Scholar 

  102. Y. Zhu, Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

It is my pleasure to thank Ron Donagi for his hospitality and for many inspiring discussions on elliptic genera and Mathieu Moonshine which have greatly influenced this work. My sincere thanks also go to Scott Carnahan, since the final touches to this exposition have benefited much from my discussions with him. Some of the material underlying this exposition arose from lecture courses that I presented at two summer schools, and I am grateful for the invitations to these events: Cordial thanks go to the organizers Alexander Cardona, Sylvie Paycha, Andrés Reyes, Hernán Ocampo and the participants of the 8th Summer School on “Geometric, Algebraic and Topological Methods for Quantum Field Theory 2013” at Villa de Leyva, Columbia, as well as the organizers Martin Schlichenmaier, Pierre Bielavsky, Harald Grosse, Ryoichi Kobayashi, Armen Sergeev, Oleg Sheinman, Weiping Zhang and the participants of the ESI School and Conference “Geometry and Quantization GEOQUANT 2013” at Vienna, Austria, for creating such inspiring events. This work is in part supported by my ERC Starting Independent Researcher Grant StG No. 204757-TQFT “The geometry of topological quantum field theories”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Wendland .

Editor information

Editors and Affiliations

Appendix—Proof of Proposition 2 in Sect. 3

Appendix—Proof of Proposition 2 in Sect. 3

The entire proof of Proposition 2 rests on the study of the \(+1\)-eigenspace of the linear operator \(\overline{J}_0\) on the subspace \(\overline{W}_{1/2}\) of the vector space \(\overline{W}\) underlying the chiral algebra. First, one shows that this eigenspace is either trivial or two-dimensional, and from this one deduces claim 1. of the proposition. One direction of claim 2. is checked by direct calculation, using the defining properties of toroidal \(N=(2,2)\) superconformal field theories. To obtain the converse, one shows that \(\mathcal E(\tau , z)\equiv 0\) implies that an antiholomorphic counterpart of the conformal field theoretic elliptic genus must vanish as well, from which claim 2 is shown to follow.

  1. 1.

    Assume that the space \(\overline{W}_{1/2}\) contains an eigenvector of \(\overline{J}_0\) with eigenvalue \(+1\). We denote the field associated to this state by \(\overline{\psi }^+_{1}(\overline{z})\). The properties of the real structure on the space of states \({\mathbb {H}}\) of our CFT imply that there is a complex conjugate state with \(\overline{J}_0\)-eigenvalue \(-1\) whose associated field we denote by \(\overline{\psi }^-_{1}(\overline{z})\). The properties of unitary irreducible representations of the Virasoro algebra imply that these fields form a Dirac fermion [see the discussion around (15)], and that therefore \(\overline{J}_1(\overline{z}):={1\over 2}:\!\!\overline{\psi }^+_{1}\overline{\psi }^-_{1}\!\!\!:\!\!(\overline{z})\) is a \(U(1)\)-current as in Example 1 in Sect. 2.1. By a procedure known as GKO-construction [54], one obtains \(\overline{J}(\overline{z})=\overline{J}_1(\overline{z})+\overline{J}_2(\overline{z})\) for the field \(\overline{J}(\overline{z})\) in the \(N=2\) superconformal algebra (9)–(10), and \(\overline{J}_k(\overline{z})=i\partial \overline{H}_k(\overline{z})\) with \(\overline{\psi }^\pm _{1}(\overline{z})=:\!e^{\pm i\overline{H}_1}\!\!:\!\!(\overline{z})\). The fields of twofold right-handed spectral flow, which by assumption are fields of the theory, are moreover given by \(\overline{J}^\pm (\overline{z})=:\!e^{\pm i(\overline{H}_1+\overline{H}_2)}\!\!:\!\!(\overline{z})\). Their OPEs with the \(\overline{\psi }^\pm _{1}(\overline{z})\) yield an additional Dirac-fermion, with fields \(\overline{\psi }^\pm _{2}(\overline{z}):=:\!e^{\pm i\overline{H}_2}\!\!:\!\!(\overline{z})\) in the CFT. This proves that the \(\pm 1\)-eigenspaces of \(\overline{J}_0\) on \(\overline{W}_{1/2}\) each are precisely two-dimensional, since by the same argument no further Dirac fermions can be fields of the theory. Note that by definition, the corresponding states belong to the sector \(\mathbb H_f\cap \mathbb H^{NS}\subset \mathbb H\) of the space of states of our theory. In summary, the \(+1\)-eigenspace of the linear operator \(\overline{J}_0\) on \(\overline{W}_{1/2}\) is either trivial or two-dimensional.

    We now study the leading order contributions in the conformal field theoretic elliptic genus \(\mathcal E(\tau ,z)\) of our theory. From (20) and by the very Definition 6 we deduce that \(2ay^{-1}\) counts states in the subspace \(V\subset \mathbb H^R\) where \(L_0,\, \overline{L}_0\) both take eigenvalue \({c\over 24}={1\over 4}={\overline{c}\over 24}\) and \(J_0\) takes eigenvalue \(-1\). More precisely,

    $$ 2a=\text{ Tr }_V\left( (-1)^{J_0-\overline{J}_0} \right) =-\text{ Tr }_V\left( (-1)^{\overline{J}_0} \right) . $$

    As follows from properties of the so-called chiral ring, see e.g. [92, Sect. 3.1.1], a basis of \(V\) is obtained by spectral flow \(\varTheta \) (see Ingredient IV in Sect. 2.2) from (i) the vacuum \(\varOmega \), (ii) the state whose corresponding field is \(\overline{J}^+(\overline{z})\), and (iii) a basis of the \(+1\)-eigenspace of the linear operator \(\overline{J}_0\) on \(\overline{W}_{1/2}\). Since according to (13), the eigenvalues of \(\overline{J}_0\) after spectral flow to \(V\) are (i) \(-1\), (ii) \(+1\), (iii) \(0\), the above trace vanishes if the \(+1\)-eigenspace of the linear operator \(\overline{J}_0\) on \(\overline{W}_{1/2}\) is two-dimensional, implying \(2a=0\), and if this eigenspace is trivial, then we obtain \(2a=2\). In conclusion, the conformal field theoretic elliptic genus of our theory either vanishes, in which case the \(+1\)-eigenspace of the linear operator \(\overline{J}_0\) on \(\overline{W}_{1/2}\) is created by two Dirac fermions, or \(\mathcal E(\tau , z) = \mathcal E_\mathrm{K3}(\tau , z)\). \(\square \)

  2. 2.
    1. a.

      Using the details of toroidal \(N=(2,2)\) superconformal field theories that are summarized in Sect. 2.3, one checks by a direct calculation that the conformal field theoretic elliptic genus of all such theories vanishes. \(\square \)

    2. b.

      To show the converse, first observe that in our discussion of \(N=(2,2)\) superconformal field theories, the two commuting copies of a superconformal algebra are mostly treated on an equal level. However, the Definition 6 breaks this symmetry, and

      $$ \overline{\mathcal E}(\overline{\tau },\overline{z}) := \text{ Tr }_{\mathbb H^{R}} \left( (-1)^{J_0-\overline{J}_0}\overline{y}^{\overline{J}_0} q^{L_0-c/24} \overline{q}^{\overline{L}_0-\overline{c}/24}\right) $$

      should define an equally important antiholomorphic counterpart of the conformal field theoretic elliptic genus. In our case by the same reasoning as for \(\mathcal E(\tau ,z)\), it must yield zero or \(\overline{\mathcal E_\mathrm{K3}(\tau , z)}\). Note that Proposition 1 implies that

      $$ {\mathcal E}(\tau , z=0) = \overline{\mathcal E}(\overline{\tau },\overline{z}=0) $$

      is a constant, which in fact is known as the Witten index [9597]. In particular, by (18) we have \(\mathcal E_\mathrm{K3}(\tau ,z=0)=24\), hence \(\mathcal E(\tau , z)\equiv 0\) implies \(\overline{\mathcal E}(\overline{\tau },\overline{z})\equiv 0\). It remains to be shown that our theory is a toroidal theory according to Definition 5 in this case. But Step 1. of our proof then implies that the \(+1\)-eigenspace of the linear operator \(\overline{J}_0\) on \(\overline{W}_{1/2}\) is created by two Dirac fermions and that the analogous statement holds for the \(+1\)-eigenspace of the linear operator \(J_0\) on \(W_{1/2}\).

      Hence we have Dirac fermions \(\psi _k^\pm (z)\) and \(\overline{\psi }_k^\pm (\overline{z})\), \(k\in \{1,\,2\}\), with OPEs as in (15). Compatibility with supersymmetry then implies that the superpartners of these fields yield the two \(\mathfrak u(1)^4\)-current algebras, as is required in order to identify our theory as a toroidal one. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wendland, K. (2015). Snapshots of Conformal Field Theory. In: Calaque, D., Strobl, T. (eds) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-09949-1_4

Download citation

Publish with us

Policies and ethics