Skip to main content

A Derived and Homotopical View on Field Theories

  • Chapter
  • First Online:
Mathematical Aspects of Quantum Field Theories

Part of the book series: Mathematical Physics Studies ((MPST))

  • 2871 Accesses

Abstract

Homological technics have been widely used in physics for a very long time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to [27] and references therein for an introduction to derived geometry.

  2. 2.

    We won’t detail what non-degeneracy means here, but simply say that its definition again mimics the main abstract feature of relative Poincaré duality.

  3. 3.

    Here an below, \(\overline{??}\) means that we consider the opposite integration theory or the opposite symplectic structure on \(??\) (it should be clear from the context).

  4. 4.

    This is a joint project with Giovanni Felder.

  5. 5.

    Roughly, \(\mathcal F_R\) carries a discrete flat connection and \(\widetilde{\mathcal F}_R\) is the factorization algebra of derived flat sections of \(\mathcal F_R\).

  6. 6.

    This is very much related to the fact that the symplectic structure on \(BG\) is zero. In the case of compact groups, \(Rep(G)\) isn’t finite enough and must be deformed in order to get a rigid enough object... this is where the quantum group comes from.

References

  1. A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)

    MathSciNet  MATH  Google Scholar 

  2. M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory. Int. J. Modern Phys. A 12(7), 1405–1429 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. Atiyah, Topological quantum field theories. Publ. Math. IHES 68, 175–186 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Baez, J. Dolan, Higher dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. I. Batalin, G. Vilkovisky, Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Beilinson, V. Drinfeld, Chiral Algebras. American Mathematical Society Colloquium Publication, 51, American Mathematical Society, Providence, RI, (2004)

    Google Scholar 

  7. F. Berezin, The Method of Second Quantization, Monographs and Textbooks in Pure and Applied Physics (Academic Press, Orlando, 1966)

    MATH  Google Scholar 

  8. D. Calaque, Lagrangian structures on mapping stacks and semi-classical TFTs, http://arxiv.org/abs/1306.3235, to appear in the proceedings of CATS4

  9. D. Calaque, Three lectures on derived symplectic geometry and topological field theories, Poisson 2012: Poisson Geometry in Mathematics and Physics. Indagat. Math. 25(5), 926–947 (2014)

    Google Scholar 

  10. A. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary. Comm. Math. Phys. 332(2), 535–603 (2014)

    Google Scholar 

  11. A. Cattaneo, P. Mnev, N. Reshetikhin, Classical and quantum Lagrangian field theories with boundary, in Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics and Gravity, PoS(CORFU2011)044

    Google Scholar 

  12. I. Contreras, C. Scheimbauer, In preparation

    Google Scholar 

  13. K. Costello, Renormalization and effective field theory, Mathematical Surveys and Monographs 170, American Mathematical Society, Providence, RI, pp 251 (2011)

    Google Scholar 

  14. K. Costello, O. Gwilliam, Factorization algebras in quantum field theory, http://math.northwestern.edu/~costello/factorization.pdf

  15. C. L. Douglas, C. Schommer-Pries and N. Snyder, Dualizable tensor categories, http://arxiv.org/abs/1312.7188

  16. L.D. Faddeev, V.N. Popov, Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25(1), 29–30 (1967)

    Google Scholar 

  17. D.S. Freed, Quantum groups from path integrals, Particles and Fields, CRM Series in Mathematical Physics (Springer, New York, 1999), pp. 63–107

    Chapter  Google Scholar 

  18. D.S. Freed, The cobordism hypothesis. Bull. Amer. Math. Soc. 50, 57–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Lurie, On the classification of topological field theories, Current Developments in Mathematics (Int. Press, Somerville, 2009), pp. 129–280

    Google Scholar 

  20. J. Lurie, Higher algebra, http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf

  21. G. Moore, Y. Tachikawa, On 2d TQFTs whose values are holomorphic symplectic varieties, in: String-Math 2011, Proceedings of Symposia in Pure Mathematics, vol. 85, AMS (2012)

    Google Scholar 

  22. T. Pantev, B. Toën, M. Vaquié, G. Vezzosi, Shifted symplectic structures, Publications mathématiques de l’IHÉS 117(1), 271–328 (2013)

    Google Scholar 

  23. P. Safronov, Quasi-Hamiltonian reduction via classical Chern-Simons theory, http://arxiv.org/abs/1311.6429

  24. C. Scheimbauer, Factorization Homology as a Fully Extended Topological Field Theory, Ph.D. thesis (2014)

    Google Scholar 

  25. J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach, in: Secondary calculus and cohomological physics (Moscow, Contemp. Math. 219, Amer. Math. Soc. Providence, RI 1998, 1997), pp. 195–210

    Google Scholar 

  26. G. Segal, The definition of a conformal field theory, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note (Cambridge Univ, Cambridge, 2004)

    Google Scholar 

  27. B. Toën, Derived algebraic geometry, to appear in EMS Surveys in Mathematical Sciences, http://arxiv.org/abs/1401.1044

  28. V.G. Turaev, O.Y. Viro, State sum invariants of \(3\)-manifolds and quantum \(6j\)-symbols. Topology 31(4), 865–902 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Calaque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calaque, D. (2015). A Derived and Homotopical View on Field Theories. In: Calaque, D., Strobl, T. (eds) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-09949-1_1

Download citation

Publish with us

Policies and ethics