Skip to main content

Sebaceous Lipids

  • Chapter
  • First Online:
Lipids and Skin Health

Abstract

Skin is protected by a layer of lipids, of both sebaceous and keratinocyte origin, which cover the surface of the skin. Different compositions of surface lipids have been reported depending on the method of sampling. Lipids produced by the epidermal cells are usually less per area in regions rich in sebaceous glands. The holocrine nature of the sebaceous gland will eventually result that the sebum will eventually coat the surface of the skin and the fur. The sebaceous lipids are primarily nonpolar lipids as triglycerides, wax esters, and squalene, while the epidermal lipids consist of ceramides, free-fatty acids, and cholesterol in almost equimolar concentrations. The composition of the sebaceous lipids manifests uniqueness and an intriguing biology exclusive to this gland. Elevated sebum excretion is a major factor involved in the pathophysiology of acne, therefore, an attempt to decode and elucidate the roles that these unique lipids have on normal skin functions and acne is imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

KO:

Knock out

SC:

Stratum corneum

VLCFA:

Very-long-chain fatty acids

References

  • Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A. 1998;95:13018–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Kelly MA, Opitz-Araya X, Thomas RE, Low MJ, Cone RD. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell. 1997;91(6):789–98.

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Smith SJ, Tow B, Elias PM, Farese RV Jr. Leptin modulates the effects of acyl CoA: diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J Clin Invest. 2002;109:175–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng JB, Russell DW. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J Biol Chem. 2004;279(36):37798–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiba K, Yoshizawa K, Makino I, Kawakami K, Onoue M. Comedogenicity of squalene monohydroperoxide in the skin after topical application. J Toxicol Sci. 2000;25(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  • Cunliffe WJ. Acne. London: Martin Dunitz; 1989.

    Google Scholar 

  • Downing DT, Strauss JS, Pochi PE. Variability in the chemical composition of human skin surface lipids. J Invest Dermatol. 1969;53(5):322–7.

    Article  CAS  PubMed  Google Scholar 

  • Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J Am Acad Dermatol. 1986;14(2 Pt 1):221–5.

    Article  CAS  PubMed  Google Scholar 

  • Downing DT, Stewart ME, Strauss JS. Changes in sebum secretion and the sebaceous gland. Clin Geriatr Med. 1989;5:109–14.

    CAS  PubMed  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  • Elias PM, Feingold KR. Lipids and the epidermal water barrier: metabolism, regulation, and pathophysiology. Semin Dermatol. 1992;11(2):176–82.

    CAS  PubMed  Google Scholar 

  • Fluhr JW, Mao-Qiang M, Brown BE, Wertz PW, Crumrine D, Sundberg JP, Feingold KR, Elias PM. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J Invest Dermatol. 2003;120(5):728–37.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Sinclair AJ. Increased alpha-linolenic acid intake increases tissue alpha-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids. 2000;35(4):395–400.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Attar-Bashi NM, Sinclair AJ. 1-14C-linoleic acid distribution in various tissue lipids of guinea pigs following an oral dose. Lipids. 2001;36(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  • Fu G, et al. Committed differentiation of hair follicle bulge cells into sebocytes: an in vitro study. Int J Dermatol. 2010;49(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM. Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol. 2003;120(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  • Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, Hoebe K, Du X, Rutschmann S, Jiang Z, Bigby T, Nizet V, Zouboulis CC, Beutler B. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria. Infect Immun. 2005;73(8):4512–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greene RS, Downing DT, Pochi PE, Strauss JS. Anatomical variation in the amount and composition of human skin surface lipid. J Invest Dermatol. 1970;54(3):240–7.

    Article  CAS  PubMed  Google Scholar 

  • Haahti E, Horning EC. Isolation and characterization of saturated and unsaturated fatty acids and alcohols of human skin surface lipids. Scand J Clin Lab Invest. 1963;15:73–8.

    Article  CAS  PubMed  Google Scholar 

  • Headington JT. Cicatricial alopecia. Dermatol Clin. 1996;14:773–82.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen E, Billings JK, Frantz RA, Kinney CK, Stewart ME, Downing DT. Age-related changes in sebaceous wax ester secretion rates in men and women. J Invest Dermatol. 1985;85:483–5.

    Article  CAS  PubMed  Google Scholar 

  • James AT, Wheatley VR. Studies of sebum. 6. The determination of the component fatty acids of human forearm sebum by gas-liquid chromatography. Biochem J. 1956;63(2):269–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kligman AM, Wheatley VR, Mills OH. Comedogenicity of human sebum. Arch Dermatol. 1970;102(3):267–75.

    Article  CAS  PubMed  Google Scholar 

  • Knags H. Cell biology of the pilosebaceous unit. In: Webster GF, Rawlings AV, editors. Acne and its therapy. New York: Informa Healthcare; 2007. pp. 9–36.

    Chapter  Google Scholar 

  • Koch K, Dommisse A, Barthlott W, Gorb SN. The use of plant waxes as templates for micro- and nanopatterning of surfaces. Acta Biomater. 2007;3(6):905–9.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE. Cutn, suberin and waxes. In: Stumpf PK, editor. Comprehensive biochemistry of plants. Vol. IV. London: Academic; 1980. pp. 600–45.

    Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. Plant Physiol. 2000;122(3):645–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin MH, Hsu FF, Miner JH. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J Biol Chem. 2013;288(6):3964–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maier H, Meixner M, Hartmann D, Sandhoff R, Wang-Eckhardt L, Zöller I, Gieselmann V, Eckhardt M. Normal fur development and sebum production depends on fatty acid 2-hydroxylase expression in sebaceous glands. J Biol Chem. 2011;286(29):25922–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyazaki M, Man WC, Ntambi JM. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr. 2001;131(9):2260–8.

    CAS  PubMed  Google Scholar 

  • Miyazaki M, Dobrzyn A, Elias PM, Ntambi JM. Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proc Natl Acad Sci U S A. 2005;102(35):12501–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Motoyoshi K. Enhanced comedo formation in rabbit ear skin by squalene and oleic acid peroxides. Br J Dermatol. 1983;109(2):191–8.

    Article  CAS  PubMed  Google Scholar 

  • Nakahigashi K, et al. PGD2 induces eotaxin-3 via PPARgamma from sebocytes: a possible pathogenesis of eosinophilic pustular folliculitis. J Allergy Clin Immunol. 2012;129(2):536–43.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N. The structures of the branched fatty acids in the wax esters of vernix caseosa. Lipids. 1971;6(12):901–5.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N. Skin lipids: their biochemical uniqueness. Science. 1974;186(4158):19–26. (Review).

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N, Ansari MN. Fatty acids of unusual double-bond positions and chain lengths found in rat skin surface lipids. Lipids. 1968;3(5):403–10.

    Article  CAS  PubMed  Google Scholar 

  • Niemann C, Horsley V. Development and homeostasis of the sebaceous gland. Semin Cell Dev Biol. 2012;23(8):928–36.

    Article  CAS  PubMed  Google Scholar 

  • Nikkari T. Comparative chemistry of sebum. J Invest Dermatol. 1974;62:257–67.

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa K, Watanabe T, Matsukawa R, Yoshimura Y, Imaeda K. The possible role of squalene and its peroxide of the sebum in the occurrence of sunburn and protection from the damage caused by U.V. irradiation. J Toxicol Sci. 1984;9(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  • Pappas A, Anthonavage M, Gordon JS. Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. J Invest Dermatol. 2002;118(1):164–71.

    Article  CAS  PubMed  Google Scholar 

  • Ruge F, et al. Delineating immune-mediated mechanisms underlying hair follicle destruction in the mouse mutant defolliculated. J Invest Dermatol. 2011;131(3):572–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmuth M, Ortegon AM, Mao-Qiang M, Elias PM, Feingold KR, Stahl A. Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol. 2005;125(6):1174–81.

    Article  CAS  PubMed  Google Scholar 

  • Smith KR, Thiboutot DM. Sebaceous gland lipids: friend or foe? J Lipid Res. 2008;49(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  • Smith RN, Braue A, Varigos GA, Mann NJ. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci. 2008;50(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  • Stewart ME. Sebaceous glands lipids. Semin Dermatol. 1992;11:100–5.

    CAS  PubMed  Google Scholar 

  • Stewart ME, Downing DT. Chemistry and function of mammalian sebaceous lipids. Adv Lipid Res. 1991;24:263–301.

    Article  CAS  PubMed  Google Scholar 

  • Stewart ME, Quinn MA, Downing DT. Variability in the fatty acid composition of wax esters from vernix caseosa and its possible relation to sebaceous gland activity. J Invest Dermatol. 1982;78(4):291–5.

    Article  CAS  PubMed  Google Scholar 

  • Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV Jr. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 2004;279(12):11767–76.

    Article  CAS  PubMed  Google Scholar 

  • Strauss JS, Downing DT, Ebling JF, Stewart ME. Sebaceous glands. In: Goldsmith LA, editor. Physiology, biochemistry and molecular biology of the skin. New York: Oxford University Press; 1991. pp. 712–40.

    Google Scholar 

  • Sundberg JP. The asebia (ab, ab1) mutations, chromosome 19. In: Sundberg JP, editor. Handbook of mouse mutations with skin and hair abnormlities. Bar Harbor: CRC Press; 1994. pp. 171–8.

    Google Scholar 

  • Thiboutot D. Regulation of human sebaceous glands. J Invest Dermatol. 2004;123:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Thiele JJ, Weber SU, Packer L. Sebaceous gland secretion is a major physiologic route of vitamin E delivery to skin. J Invest Dermatol. 1999;113(6):1006–10.

    Article  CAS  PubMed  Google Scholar 

  • Turkish AR, Sturley SL. The genetics of neutral lipid biosynthesis: an evolutionary perspective. Am J Physiol Endocrinol Metab. 2009;297(1):E19–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasireddy V, Uchida Y, Salem N Jr, Kim SY, Mandal MN, Reddy GB, Bodepudi R, Alderson NL, Brown JC, Hama H, Dlugosz A, Elias PM, Holleran WM, Ayyagari R. Loss of functional ELOVL4 depletes very long-chain fatty acids (> or = C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum Mol Genet. 2007;16(5):471–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wertz PW. Sebum secretions and acne. In: Webster GF, Rawlings AV, editors. Acne and its therapy. New York: Informa Healthcare; 2007. pp. 37–43.

    Chapter  Google Scholar 

  • Westerberg R, Tvrdik P, Undén AB, MÃ¥nsson JE, Norlén L, Jakobsson A, Holleran WH, Elias PM, Asadi A, Flodby P, ToftgÃ¥rd R, Capecchi MR, Jacobsson A. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem. 2004;279(7):5621–9.

    Article  CAS  PubMed  Google Scholar 

  • Wille JJ, Kydonieus A. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol. 2003;16(3):176–87.

    Article  CAS  PubMed  Google Scholar 

  • Yen CL, Monetti M, Burri BJ, Farese RV Jr. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res. 2005a;46(7):1502–11.

    Google Scholar 

  • Yen CL, Brown CH 4th, Monetti M, Farese RV Jr. A human skin multifunctional O-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. J Lipid Res. 2005b;46(11):2388–97.

    Google Scholar 

  • Zhang Q, et al. Involvement of PPARgamma in oxidative stress-mediated prostaglandin E(2) production in SZ95 human sebaceous gland cells. J Invest Dermatol. 2006;126(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Eilertsen KJ, Ge L, Zhang L, Sundberg JP, Prouty SM, Stenn KS, Parimoo S. Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nat Genet. 1999;23:268–70.

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis CC. Acne and sebaceous gland function. Clin Dermatol. 2004;22:360–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Pappas PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pappas, A. (2015). Sebaceous Lipids. In: Pappas, A. (eds) Lipids and Skin Health. Springer, Cham. https://doi.org/10.1007/978-3-319-09943-9_9

Download citation

Publish with us

Policies and ethics