Skip to main content

Wax Esters: Chemistry and Biosynthesis

  • Chapter
  • First Online:

Abstract

Wax esters are unique surface lipids found on the surface of terrestrial organisms. After a brief review of the composition, the mechanisms used in their biosynthesis by sebaceous glands are summarized. The molecular biology of biosynthesis of methyl-branched, short chain and very long chain acids, and the biochemical mechanism of the loss of the carboxyl carbon of the elongated very long chain acids to generate alkanes are reviewed. The molecular biology of biosynthesis of the major types of molecules contains the hydroxyl group(s) to which the acids are esterified and the molecular biology of the esterification process are reviewed. The molecular bases of seasonal and hormonal regulation of biosynthesis of wax esters that implicate some functions of the wax esters are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abalain JH, Amet Y, Lecaque D, Secchi J, Daniel JY, Floch HH. Ultrastructural changes in the uropygial gland of the male Japanese quail, Coturnix coturnix, after testosterone treatment. Comparison with the sebaceous gland of the male rat. Cell Tissue Res. 1986;246(2):373–8.

    Article  CAS  PubMed  Google Scholar 

  • Anderson GJ, Kolattukudy PE. Fatty acid chain elongation by microsomal enzymes from the bovine meibomian gland. Arch Biochem Biophys. 1985;237:177–85.

    Article  CAS  PubMed  Google Scholar 

  • Bedord CJ, Kolattukudy PE, Rogers L. Isolation and characterization of a tryptic fragment containing the thioesterase segment of fatty acid synthetase from the uropygial gland of goose. Arch Biochem Biophys. 1978;186:139–51.

    Article  CAS  PubMed  Google Scholar 

  • Biester EM, Hellenbrand J, Gruber J, Hamberg M, Frentzen M. Identification of avian wax synthases. BMC Biochem. 2012;13:4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnet S, Rogers L, Sasaki G, Kolattukudy PE. Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J Biol Chem. 1991;266:9795–804.

    CAS  PubMed  Google Scholar 

  • Buckner JS, Kolattukudy PE. Lipid biosynthesis in the sebaceous glands: synthesis of multibranched fatty acids from methylmalonyl-Coenzyme A in cell-free preparations from the uropygial gland of goose. Biochemistry. 1975a;14:1774–82.

    Google Scholar 

  • Buckner JS, Kolattukudy PE. Lipid biosynthesis in sebaceous glands: regulation of the synthesis of n- and branched fatty acids by malonyl-Coenzyme A decarboxylase. Biochemistry. 1975b;14:1768–73.

    Google Scholar 

  • Buckner JS, Kolattukudy PE. One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry. 1976a;15:1948–57.

    Google Scholar 

  • Buckner JS, Kolattukudy PE. Biochemistry of bird waxes. In: Kolattukudy PE, editor. Chemistry and biochemistry of natural waxes. Amsterdam: Elsevier; 1976b. pp. 148–97.

    Google Scholar 

  • Butovich IA. Lipidomics of human meibomian gland secretions: chemistry, biophysics and physiological role of meibomian lipids. Prog Lipid Res. 2011;50:278–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M. Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res. 2010;51(11):3377–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheesbrough TM, Kolattukudy PE. Alkane biosynthesis by decarbonylation of aldehydes, a novel biochemical reaction catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci U S A. 1984;81:6613–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheesbrough TM, Kolattukudy PE. Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem. 1988;263:2738–43.

    CAS  PubMed  Google Scholar 

  • Cheng JB, Russell DW. Mammalian wax biosynthesis. I. Identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J Biol Chem. 2004a;279(36):37789–97.

    Google Scholar 

  • Cheng JB, Russell DW. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J Biol Chem. 2004b;279(36):37798–807. (Epub 2004 June 27).

    Google Scholar 

  • Courchesne-Smith C, Jang S-H, Shi Q, DeWille J, Sasaki G, Kolattukudy PE. Cytoplasmic accumulation of a normally mitochondrial malonyl-CoA decarboxylase by the use of an alternate transcription start site. Arch Biochem Biophys. 1992;298:576–86.

    Article  CAS  PubMed  Google Scholar 

  • Das D, Eser BE, Han J, Sciore A, Marsh EN. Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem Int Ed Engl. 2011;50(31):7148–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dennis MW, Kolattukudy PE. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci U S A. 1992;89:5306–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • deRenobales M, Rogers L, Kolattukudy PE. Involvement of a thioesterase in the production of short-chain fatty acids in the uropygial glands of mallard ducks (Anas platyrhynchos). Arch Biochem Biophys. 1980;205:464–77.

    Article  CAS  Google Scholar 

  • Downing DT. Mammalian waxes. In: Kolattukudy PE, editor. Chemistry and biochemistry of natural waxes. Amsterdam: Elsevier; 1976. pp. 18–42.

    Google Scholar 

  • Fernandes ND, Kolattukudy PE. Methylmalonyl coenzyme A selectivity of cloned and expressed acyltransferase and beta-ketoacyl synthase domains of mycocerosic acid synthase from mycobacterium bovis BCG. J Bacteriol. 1997;179:7538–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finn RD, McLaughlin LA, Hughes C, Song C, Henderson CJ, Roland Wolf C. Cytochrome b5 null mouse: a new model for studying inherited skin disorders and the role of unsaturated fatty acids in normal homeostasis. Transgenic Res. 2011;20(3):491–502. doi:10.1007/s11248-010-9426-1. (Epub 2010 July 30).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster RJ, Bonsall RF, Poulose AJ, Kolattukudy PE. Interaction of S-acyl fatty acid synthase thioester hydrolase with fatty acid synthase: direct measurement of binding by fluorescence anisotropy. J Biol Chem. 1985a;260:1386–9.

    Google Scholar 

  • Foster RJ, Poulose AJ, Bonsall RF, Kolattukudy PE. Measurement of distance between the active serine of the thioesterase domain and the pantetheine thiol of fatty acid synthase by fluorescence resonance energy transfer. J Biol Chem. 1985b;260:2826–31.

    Google Scholar 

  • Friedberg SJ, Greene RC. The enzymatic synthesis of wax in liver. J Biol Chem. 1967;242(2):234–7.

    CAS  PubMed  Google Scholar 

  • Froese DS, et al. Crystal structures of malonyl-coenzyme a decarboxylase provide insights into its catalytic mechanism and disease-causing mutations. Structure. 2013;21(7):1182–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodridge AG, Jenrik RA, McDevitt MA, Morris SM Jr, Winberry LK. Malic enzyme and fatty acid synthase in the uropygial gland and liver of embryonic and neonatal ducklings. Tissue-specific regulation of gene expression. Arch Biochem Biophys. 1984;230, 82–92.

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zhang X, Zhou D, Okunade AL, Su X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J Lipid Res. 2012;53(7):1327–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardwick JP. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem Pharmacol. 2008;75(12):2263–75.

    Article  CAS  PubMed  Google Scholar 

  • Hellenbrand J, Biester EM, Gruber J, Hamberg M, Frentzen M. Fatty acyl-CoA reductases of birds. BMC Biochem. 2011;12:64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hines R, Kolattukudy PE, Sharkey P. Pharmacological induction of molt and gonadal involution in birds. Proceedings Association of Avian Veterinarians; 1993. pp. 127–34.

    Google Scholar 

  • Honsho M, Asaoku S, Fujiki Y. Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis. J Biol Chem. 2010;285(12):8537–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob J. Bird waxes. In: Kolattukudy PE, editor. Chemistry and biochemistry of natural waxes. Amsterdam: Elsevier; 1976. pp. 94–141.

    Google Scholar 

  • Jacobsen E, Billings JK, Frantz RA, Kinney CK, Stewart ME, Downing DT. Age-related changes in sebaceous wax ester secretion rates in men and women. J Invest Dermatol. 1985 Nov;85(5):483–5.

    Article  CAS  PubMed  Google Scholar 

  • Jallageas M, Assenmacher I. Further evidence for reciprocal interactions between the annual sexual and thyroid cycles in male Peking ducks. Gen Comp Endocrino. 1979;37:44–51.

    Article  CAS  Google Scholar 

  • Jallageas M, Tamisier A, Assenmacher I. A comparative study of the annual cycles in sexual and thyroid function in male Peking ducks (Anas platyrhynchos) and teal (Anas crecca). Gen Comp Endocrinol. 1978;36:201–10.

    Article  CAS  PubMed  Google Scholar 

  • Jang SH, Cheesbrough TM, Kolattukudy PE. Molecular cloning, nucleotide sequence, and tissue distribution of malonyl-CoA decarboxylase. J Biol Chem. 1989;264:3500–5.

    CAS  PubMed  Google Scholar 

  • Kelly EJ, Nakano M, Rohatgi P, Yarov-Yarovoy V, Rettie AE. Finding homes for orphan cytochrome P450s: CYP4V2 and CYP4F22 in disease states. Mol Interv. 2011;11(2):124–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khnykin D, Miner JH, Jahnsen F. Role of fatty acid transporters in epidermis: implications for health and disease. Dermatoendocrinology. 2011;3(2):53–61. doi:10.4161/derm.3.2.14816. (Epub 2011 April 1).

    Article  CAS  Google Scholar 

  • Kihara A. Very long-chain fatty acids: elongation, physiology, and related disorders. J Biochem. 2012;152(5):387–95.

    Article  CAS  PubMed  Google Scholar 

  • Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. IOVS. 2011;52(4):1938–78. (Special Issue).

    Google Scholar 

  • Kolattukudy PE. Mechanisms of synthesis of waxy esters in broccoli (Brassica oleracea). Biochemistry. 1967;6:2705.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE. Reduction of fatty acids to alcohols by cell free preparations of Euglena gracilis. Biochemistry. 1970;9:1095–102.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE. Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch Biochem Biophys. 1971;142:701–9.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE. Structure and cell-free synthesis of alkane-1,2-diols of the uropygial gland of white crowned sparrow Zonotrichia leucophrys. Biochem Biophys Res Commun. 1972;49:1376–83.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE. Avian uropygial (preen) gland. In: Lowenstein JM, editor. Methods in enzymology. Vol. 72. New York: Academic; 1981. pp. 714–20.

    Google Scholar 

  • Kolattukudy PE. Lipid derived defensive polymers and waxes and their role in plant-microbe interaction. In: Stumpf PK, editor. The biochemistry of plants. Vol. 9. New York: Academic; 1987. pp. 291–314.

    Google Scholar 

  • Kolattukudy PE, Rogers LM. Acyl-CoA reductase and acyl-CoA fatty alcohol acyl transferase in the microsomal preparation from the bovine meibomian gland. J Lipid Res. 1986;27:404–11.

    CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Rogers LM. Biosynthesis of 3-hydroxy fatty acids, the pheromone components of female mallard ducks, by cell-free preparation from the uropygial gland. Arch Biochem Biophys. 1987;252:121–9.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Sawaya WN. Age dependent structural changes in the diol esters of uropygial glands of chicken. Lipids. 1974;9:290–2.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Rogers LM, Nicolaides N. Biosynthesis of lipids by bovine meibomian glands. Lipids. 1985a;20:468–74.

    Google Scholar 

  • Kolattukudy PE, Bohnet S, Rogers L. Disappearance of short chain acids from the preen gland wax of mallard ducks during eclipse. J Lipid Res. 1985b;26:989–94.

    Google Scholar 

  • Kolattukudy PE, Rogers L, Flurkey W. Suppression of a thioesterase gene expression and the disappearance of short chain fatty acids in the preen gland of the mallard duck during eclipse, the period following postnuptial molt. J Biol Chem. 1985c;260:10789–93.

    Google Scholar 

  • Kolattukudy PE, Bohnet S, Rogers LM. Diesters of 3-hydroxy fatty acids produced by the uropygial glands of female mallards uniquely during the mating season. J Lipid Res. 1987a;28:582–8.

    Google Scholar 

  • Kolattukudy PE, Rogers LM, Poulose AJ, Jang SH, Kim YS, Cheesbrough TM, Liggitt DH. Developmental pattern of the expression of malonyl-CoA decarboxylase gene and the production of unique lipids in the goose uropygial glands. Arch Biochem Biophys. 1987b;256:446–54.

    Google Scholar 

  • Kolattukudy PE, Bohnet S, Sasaki G, Rogers L. Developmental changes in the expression of S-acyl fatty acid synthase thioesterase gene and lipid composition in the uropygial gland of mallard ducks (Anas platyrhynchos). Arch Biochem Biophys. 1991;284:201–6.

    Article  CAS  PubMed  Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. Plant Physiol. 2000;122(3):645–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY, Tong L. Lipid-containing lubricants for dry eye: a systematic review. Optom Vis Sci. 2012;89(11):1654–61.

    Article  PubMed  Google Scholar 

  • Lefèvre C, Bouadjar B, Ferrand V, Tadini G, Mégarbané A, Lathrop M, Prud’homme JF, Fischer J. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum Mol Genet. 2006;15(5):767–76. (Epub 2006 Jan 25).

    Article  PubMed  Google Scholar 

  • Lin MH, Hsu FF, Miner JH. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J Biol Chem. 2013a;288(6):3964–76.

    Google Scholar 

  • Lin F, Das D, Lin XN, Marsh EN. Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme. FEBS J. 2013b;280(19):4773–81.

    Google Scholar 

  • Lopaschuk GD, Stanley WC. Malonyl-CoA decarboxylase inhibition as a novel approach to treat ischemic heart disease. Cardiovasc Drugs Ther. 2006;20:433–9.

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Tam QT, Kolattukudy PE. Peroxisome proliferator-activated receptor gamma1 (PPAR-gamma1) as a major PPAR in a tissue in which estrogen induces peroxisome proliferation. FEBS Lett. 1998a;434:394–400.

    Google Scholar 

  • Ma H, Sprecher HW, Kolattukudy PE. Estrogen-induced production of a peroxisome proliferator-activated receptor (PPAR) ligand in a PPAR γ-expressing tissue. J Biol Chem. 1998b;273:30131–8.

    Google Scholar 

  • Maier H, Meixner M, Hartmann D, Sandhoff R, Wang-Eckhardt L, Zöller I, Gieselmann V, Eckhardt M. Normal fur development and sebum production depends on fatty acid 2-hydroxylase expression in sebaceous glands. J Biol Chem. 2011;286(29):25922–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNairn AJ, et al. TGFβ signaling regulates lipogenesis in human sebaceous glands cells. BMC Dermatol. 2013;13:2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menon GK, Menon J. Avian epidermal lipids: functional considerations and relationship to feathering. Amer Zool. 2000;40(4):540–52.

    Article  CAS  Google Scholar 

  • Miklaszewska M, Kawiński A, Banaś A. Detailed characterization of the substrate specificity of mouse wax synthase. Acta Biochim Pol. 2013;60(2):209–15.

    CAS  PubMed  Google Scholar 

  • Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci U S A. 2003;100(16):9156–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueckler MM, Pitot HC. Transcriptional control of ornithine aminotransferase synthesis in rat kidney by estrogen and thyroid hormone. J Biol Chem. 1983;268:1781–4.

    Google Scholar 

  • Mueckler MM, Moran S, Pitot HC. Transcriptional control of ornithine aminotransferase synthesis in rat kidney by estrogen and thyroid hormone. J Biol Chem. 1984;259:2302–5.

    CAS  PubMed  Google Scholar 

  • Nazzaro-Porro M, Passi S, Boniforti L, Belsito F. Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol. 1979;73(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N. Skin lipids: their biochemical uniqueness. Science. 1974;186(4158):19–26.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N, Santos EC. The di- and triesters of the lipids of steer and human meibomian glands. Lipids. 1985;20(7):454–67.

    Article  CAS  PubMed  Google Scholar 

  • Pappas A. Epidermal surface lipids. Dermantoendocrinology. 2009;1(2):72–6.

    Article  CAS  Google Scholar 

  • Poulose AJ, Rogers L, Cheesbrough TM, Kolattukudy PE. Cloning and sequencing of the cDNA for S-acyl fatty acid synthase thioesterase from the uropygial gland of mallard duck. J Biol Chem. 1985;260:15953–8.

    CAS  PubMed  Google Scholar 

  • Proksch E, Jensen J. Skin as an organ of protection. In: Goldsmith LA, et al. editors. Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill, 2012.

    Google Scholar 

  • Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A. 2012;109(37):14858–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rainwater DL, Kolattukudy PE. Fatty acid biosynthesis in mycobacterium tuberculosis var. bovis bacillus calmette-guerin: purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J Biol Chem. 1985;260:616–23.

    CAS  PubMed  Google Scholar 

  • Rogers L, Kolattukudy PE. Purification of S-acyl fatty acid synthase thioester hydrolase by affinity chromatography with fatty acid synthase attached to sepharose. Anal Biochem. 1984;137:444–8.

    Article  CAS  PubMed  Google Scholar 

  • Rogers L, Kolattukudy PE, deRenobales M. Purification and characterization of an S-acyl fatty acid synthase thioester hydrolase which modifies the product specificity of fatty acid synthase in the uropygial gland of mallard. J Biol Chem. 1982;257:880–6.

    CAS  PubMed  Google Scholar 

  • Salibian A, Montalti D. Physiological and biochemical aspects of the avian uropygial gland. Braz J Biol. 2009;69(2):437–46.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki GC, Cheesbrough V, Kolattukudy PE. Nucleotide sequence of the S-acyl fatty acid synthase thioesterase gene and its tissue specific expression. DNA. 1988;7:449–57.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Akimoto N, Kitamura K, Kurihara H, Hayashi N, Ito A. Adapalene suppresses sebum accumulation via the inhibition of triacylglycerol biosynthesis and perilipin expression in differentiated hamster sebocytes in vitro. J Dermatol Sci. 2013;70(3):204–10.

    Article  CAS  PubMed  Google Scholar 

  • Sawaya WN, Kolattukudy PE. Structure and biosynthesis of diesters of alkane-2,3-diols of the uropygial glands of ring-necked pheasants. Biochemistry. 1972;11:4398–406.

    Article  CAS  PubMed  Google Scholar 

  • Sawaya WN, Kolattukudy PE. Enzymatic esterification of alkane-2,3-diols by the microsomes of the uropygial glands of ring-necked pheasants (Phasianus colchicus). Arch Biochem Biophys. 1973;157:309–19.

    Article  CAS  PubMed  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. Microbial biosynthesis of alkanes. Science. 2010;329(5991):559–62.

    Article  CAS  PubMed  Google Scholar 

  • Schirra F, Suzuki T, Richards SM, Jensen RV, Liu M, Lombardi MJ, Rowley P, Treister NS, Sullivan DA. Androgen control of gene expression in the mouse meibomian gland. Invest Ophthalmol Vis Sci. 2005;46(10):3666–75.

    Article  PubMed  Google Scholar 

  • Schmuth M, Ortegon AM, Mao-Qiang M, Elias PM, Feingold KR, Stahl A. Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol. 2005;125(6):1174–81.

    Article  CAS  PubMed  Google Scholar 

  • Sharp PJ, Klandorf H, McNeilly AS. Plasma prolactin, thyroxine, triiodothyronine, testosterone, and luteinizing hormone during a photoinduced reproductive cycle in mallard drakes. J Exp Zool. 1986;238:409–13.

    Article  CAS  PubMed  Google Scholar 

  • Sirakova TD, Deb C, Daniel J, Singh HD, Maamar H, Dubey VS, Kolattukudy PE. Wax ester synthesis is required for mycobacterium tuberculosis to enter in vitro dormancy. PLoS ONE. 2012;7(12):e51641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res. 2008;49(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  • Stark K, Törmä H, Oliw EH. Co-localization of COX-2, CYP4F8, and mPGES-1 in epidermis with prominent expression of CYP4F8 mRNA in psoriatic lesions. Prostaglandins Other Lipid Mediat. 2006;79(1–2):114–25. (Epub 2006 Jan 27).

    Article  CAS  PubMed  Google Scholar 

  • Strauss JS, Pochi PE, Downing DT. Skin lipids and acne. Annu Rev Med. 1975;26:27–32.

    Article  CAS  PubMed  Google Scholar 

  • Tang BY, Hansen IA. Synthesis of 2,3-diols in chicken uropygial glands. Comp Biochem Physiol B. 1976;54(4):483–8.

    CAS  PubMed  Google Scholar 

  • Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, Clawson G. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120(6):905–14.

    Article  CAS  PubMed  Google Scholar 

  • Turkish AR, Sturley SL. The genetics of neutral lipid biosynthesis: an evolutionary perspective. Am J Physiol Endocrinol Metab. 2009;297(1):E19–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL. Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem. 2005;280(15):14755–64. (Epub 2005 Jan 25).

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y. The role of fatty acid elongation in epidermal structure and function. Dermatoendocrinology. 2011;3(2):65–9.

    Article  CAS  Google Scholar 

  • Ussher JR, Lopaschuk GD. The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovasc Res. 2008;79:259–68.

    Article  CAS  PubMed  Google Scholar 

  • Vasireddy V, Uchida Y, Salem N Jr, Kim SY, Mandal MN, Reddy GB, Bodepudi R, Alderson NL, Brown JC, Hama H, Dlugosz A, Elias PM, Holleran WM, Ayyagari R. Loss of functional ELOVL4 depletes very long-chain fatty acids (> or = C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum Mol Genet. 2007;16(5):471–82. (Epub 2007 Jan 5).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vioque J, Kolattukudy PE. Resolution and purification of an aldehyde generating and an alcohol generating fatty acyl CoA reductase from pea leaves (Pisum sativum L.). Arch Biochem Biophys. 1997;340:64–72.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kolattukudy PE. Solubilization, purification and characterization of fatty acyl-CoA reductase from duck uropygial gland. Biochem Biophys Res Commun. 1995a;208:210–5.

    Google Scholar 

  • Wang X, Kolattukudy PE. Solubilization and purification of aldehyde-generating fatty acyl-CoA reductase from green alga Botryococcus braunii. FEBS Lett. 1995b;370:15–8.

    Google Scholar 

  • Westerberg R, Tvrdik P, Undén AB, Månsson JE, Norlén L, Jakobsson A, Holleran WH, Elias PM, Asadi A, Flodby P, Toftgård R, Capecchi MR, Jacobsson A. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem. 2004;279(7):5621–9. (Epub 2003 Oct 27).

    Article  CAS  PubMed  Google Scholar 

  • Wróbel A, Seltmann H, Fimmel S, Müller-Decker K, Tsukada M, Bogdanoff B, Mandt N, Blume-Peytavi U, Orfanos CE, Zouboulis CC. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol. 2003;120(2):175–81.

    Article  PubMed  Google Scholar 

  • Yen CL, Monetti M, Burri BJ, Farese RV Jr. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res. 2005a;46(7):1502–11.

    Google Scholar 

  • Yen CL, Brown CH 4th, Monetti M, Farese RV Jr. A human skin multifunctional O-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. J Lipid Res. 2005b;46(11):2388–97.

    Google Scholar 

  • Yoder JA, Denlinger DL, Dennis MW, Kolattukudy PE. Enhancement of diapausing flesh fly puparia with additional hydrocarbons and evidence for alkane biosynthesis by a decarbonylation mechanism. Insect Biochem Mol Biol. 1992;22:237–43.

    Article  CAS  Google Scholar 

  • Zhang X, Ho SM. Epigenetics meets endocrinology. J Mol Endocrinol. 2011;46(1):R11–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zouboilis et al. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol. 1999;113(6):1011–20.

    Google Scholar 

Download references

Acknowledgments

I thank Dr. Tania Sirakova, Kelly Brussel, Maria Windyga, and Bracken Roberts for assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.E. Kolattukudy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kolattukudy, P. (2015). Wax Esters: Chemistry and Biosynthesis. In: Pappas, A. (eds) Lipids and Skin Health. Springer, Cham. https://doi.org/10.1007/978-3-319-09943-9_11

Download citation

Publish with us

Policies and ethics