Skip to main content

Harmonic Spinors on Reductive Homogeneous Spaces

  • Chapter
  • First Online:
Developments and Retrospectives in Lie Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 37))

Abstract

An integral intertwining operator is given from certain principal series representations into spaces of harmonic spinors for Kostant’s cubic Dirac operator. This provides an integral representation for harmonic spinors on a large family of reductive homogeneous spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The factor of 2 in this formula does not appear in [6]. This is because we are taking \(xy + yx =\langle x\,,y\rangle\) in the definition of the Clifford algebra, while \(xy + yx = 2\langle x\,,y\rangle\) is used in [6].

References

  1. M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Inv. Math. 42 (1977), 1–62.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Huckleberry, I. Penkov, and G. Zuckerman (Eds.). Lie groups: structure, actions, and representations. Process in Mathematics, Birkhäuser, 306 (2013), 41–57.

    Google Scholar 

  3. R. Goodman and N. R. Wallach, Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and its Applications, 68, Cambridge University Press, 1998.

    Google Scholar 

  4. S. Helgason, Groups and Geometric Analysis. Academic Press, 1984.

    Google Scholar 

  5. J.-S. Huang, Y.-F. Kang, and P. Pandžić, Dirac cohomology of some Harish–Chandra modules, Trans. Groups 14 (2009), 163–173.

    Google Scholar 

  6. B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), no. 3, 447–501.

    Google Scholar 

  7. S. Mehdi, Parthasarathy Dirac operators and discrete series representations, Connected at infinity II: A Selection of Mathematics by Indians. Edited by R. Bhatia, C. S. Rajan and A. I. Singh. Text and Readings in Mathematics 67. Hindustan Book Agency, New Delhi, 2013.

    Google Scholar 

  8. S. Mehdi and R. Zierau, Harmonic spinors on semisimple symmetric spaces. J. Funct. Anal. 198 (2003), 536–557.

    Google Scholar 

  9. S. Mehdi and R. Zierau, Principal series representations and harmonic spinors. Adv. Math. 1999 (2006), 1–28.

    Google Scholar 

  10. S. Mehdi and R. Zierau, The Dirac cohomology of a finite dimensional representation. To appear in the Proceedings of the AMS. Proc. Amer. Math. Soc. 142 (2014), 1507–1512.

    Google Scholar 

  11. R. Parthasarathy, Dirac operator and the discrete series. Ann. of Math. 96 (1972), 1–30.

    Google Scholar 

  12. D. A. Vogan, Unitarizability of certain series of representations. Ann. of Math. 120 (1984), 141–187.

    Google Scholar 

  13. D. A. Vogan and G. J. Zuckerman, Unitary representations with non-zero cohomology. Comp. Math., 53 (1984), 51–90.

    Google Scholar 

  14. N. R. Wallach, Real Reductive Groups I. Pure and Applied Mathematics 132, Academic press, 1988.

    Google Scholar 

  15. J. A. Wolf, Partially harmonic spinors and representations of reductive Lie groups. J. Functional Analysis 15 (1974), 117–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Zierau .

Editor information

Editors and Affiliations

1 Appendix: Geometric vs. Algebraic Dirac Operators

For the convenience of the reader we provide here a proof of Proposition 8. Recall that V denotes a smooth admissible representation of G, V K the space of K-finite vectors in V, \(V _{K}^{\star }\) the K-finite dual of V K and \(S_{\mathfrak{s}}\) is the spin representation for \(\mathfrak{k}\). Let E be a finite-dimensional representation of \(\mathfrak{k}\) such that the tensor product \(E \otimes S_{\mathfrak{s}}\) lifts to a representation of the group K, and denote by E the dual of E. The K-representation \(E \otimes S_{\mathfrak{s}}\) induces a homogeneous bundle \(\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E}\longrightarrow G/K\) over GK whose space of smooth sections, on which G acts by left translations, is denoted by \(C^{\infty }(G/K,\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E})\). The map

$$\displaystyle\begin{array}{rcl} \varPsi:\mathrm{ Hom}_{G}(V,C^{\infty }(G/K,\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E}))\longrightarrow \mathrm{Hom}_{ K}(E^{\star },S_{\mathfrak{s}} \otimes V _{ K}^{\star })& & {}\\ \end{array}$$
defined by \(\varPsi (T)(e^{\star })(v) = 1 \otimes e^{\star }T(v)(1)\), is an isomorphism, where 1 denotes the identity G.

Next, as in Sect. 2, consider the (cubic) Dirac operators

$$\displaystyle\begin{array}{rcl} & & \mathcal{D}_{G/K}(\mathcal{E}): C^{\infty }(G/K,\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E})\longrightarrow C^{\infty }(G/K,\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E})\text{ and } {}\\ & & D_{V _{K}^{\star }}: S_{\mathfrak{s}} \otimes V _{K}^{\star }\longrightarrow S_{\mathfrak{s}} \otimes V _{ K}^{\star }, {}\\ \end{array}$$
and define the maps
$$\displaystyle\begin{array}{rcl} \mathcal{D}_{{\ast}}:\mathrm{ Hom}_{G}(V,C^{\infty }(G/K,\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E}))\longrightarrow \mathrm{Hom}_{ G}(V,C^{\infty }(G/K,\mathcal{S}_{\mathfrak{s}} \otimes \mathcal{E}))& & {}\\ \end{array}$$
and
$$\displaystyle\begin{array}{rcl} D_{{\ast}}:\mathrm{ Hom}_{K}(E^{\star },S_{\mathfrak{s}} \otimes V _{ K}^{\star })\longrightarrow \mathrm{Hom}_{ K}(E^{\star },S_{\mathfrak{s}} \otimes V _{ K}^{\star })& & {}\\ \end{array}$$
by
$$\displaystyle\begin{array}{rcl} & & (D_{{\ast}}(T))(v) = \mathcal{D}_{G/K}(\mathcal{E})(T(v)), {}\\ & & (D_{{\ast}}(A))(e^{\star }) = D_{ V _{K}^{\star }}(A(e^{\star })). {}\\ \end{array}$$
We claim that the following diagram is commutative:

317171_1_En_6_Figa_HTML.gif

Indeed one has

$$\displaystyle\begin{array}{rcl} \varPsi (D_{{\ast}}(T))(e^{\star })(v) = (1 \otimes e^{\star })\big((D_{ {\ast}}(T))(v)(1)\big) = (1 \otimes e^{\star })\big(\mathcal{D}_{ G/K}(T(v))(1)\big)& & {}\\ \end{array}$$
and
$$\displaystyle\begin{array}{rcl} & & \mathcal{D}_{G/K}(T(v))(1) {}\\ & & \qquad \qquad =\sum _{i} \frac{d} {dt}\vert _{t=0}(\gamma (X_{i}) \otimes 1)(T(v)(\exp (tX_{i})(1)) - (\gamma (\mathbf{c_{\mathfrak{s}}}) \otimes 1)(T(v)(1)) {}\\ & & \qquad \qquad =\sum _{i} \frac{d} {dt}\mid _{t=0}(\gamma (X_{i}) \otimes 1)(T(\exp (-tX_{i})v)(1)) - (\gamma (\mathbf{c_{\mathfrak{s}}}) \otimes 1)(T(v)(1)) {}\\ & & \qquad \qquad = -\sum _{i}(\gamma (X_{i}) \otimes 1)(T(X_{i}v)(1)) - (1 \otimes \gamma (\mathbf{c_{\mathfrak{s}}}))(T(v)(1)) {}\\ \end{array}$$
which means that
$$\displaystyle\begin{array}{rcl} \varPsi (D_{{\ast}}(T))(e^{\star })(v) = -\sum _{ i}(\gamma (X_{i}) \otimes e^{\star })(T(X_{ i}v)(1)) - (\gamma (\mathbf{c_{\mathfrak{s}}}) \otimes e^{\star })(T(v)(1)).& & {}\\ \end{array}$$
On the other hand, one has
$$\displaystyle\begin{array}{rcl} & & \Big((D_{{\ast}}(\varPsi (T))(e^{\star })\Big)(v) =\Big (D_{ V _{K}^{\star }}(\varPsi (T)(e^{\star }))\Big)(v) {}\\ & & \qquad \quad = -\sum _{i}\big((\gamma (X_{i}) \otimes X_{i})(\varPsi (T)(e^{\star })\big)(v) - (\gamma (\mathbf{c_{\mathfrak{s}}}) \otimes 1)(\varPsi (T)(e^{\star })(v)) {}\\ & & \qquad \quad = -\sum _{i}(\gamma (X_{i}) \otimes 1)(\varPsi (T)(e^{\star })(X_{ i}v)) - (\gamma (\mathbf{c_{\mathfrak{s}}}) \otimes 1)(\varPsi (T)(e^{\star })(v)) {}\\ & & \qquad \quad = -\sum _{i}(\gamma (X_{i}) \otimes e^{\star })(T(X_{ i}v)(1)) - (\gamma (\mathbf{c_{\mathfrak{s}}}) \otimes e^{\star })(T(v)(1)). {}\\ \end{array}$$
We deduce the following isomorphism relating algebraic and geometric harmonic spinors:
$$\displaystyle\begin{array}{rcl} \varPsi:\mathrm{ Hom}_{G}(V,\mathrm{ker}(\mathcal{D}_{G/K}(\mathcal{E}))) \simeq \mathrm{ Hom}_{K}(E^{\star },\mathrm{ker}(D_{ V _{K}^{\star }})),& & {}\\ \end{array}$$
therefore proving Proposition 8.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mehdi, S., Zierau, R. (2014). Harmonic Spinors on Reductive Homogeneous Spaces. In: Mason, G., Penkov, I., Wolf, J. (eds) Developments and Retrospectives in Lie Theory. Developments in Mathematics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-09934-7_6

Download citation

Publish with us

Policies and ethics