Skip to main content

Composite Shaft Rotor Dynamics: An Overview

  • Conference paper
  • First Online:
Vibration Engineering and Technology of Machinery

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 23))

Abstract

This paper summarizes research on dynamics of composite shafts, with an objective to develop light weight rotor systems. A review of available literature post-1996 is presented here, since a comprehensive review on similar topic was published in 1997 by Singh et al. Specifically the various aspects covered are, theories for dynamic analysis of fiber reinforced composite shaft, their modeling and analysis, experimental work, and design optimization procedures. All these aspects are important for full development of ‘Composite Rotors’ for light weight high performance transmission systems. Directions for future research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad S, Zienkiewicz OC, Irons B (1970) Analysis of thin and thick shell structures by curved finite elements. Int J Numer Meth Eng 2:419–451

    Article  Google Scholar 

  2. Bang KG, Lee DG (2002) Design of carbon fiber composite shafts for high speed air spindles. Compos Struct 55:247–259

    Article  Google Scholar 

  3. Bauchau OA (1981) Design, manufacturing and testing of high speed rotating graphite/epoxy shafts, Doctorate thesis, Department of Aeronautics and Astronautics, MIT

    Google Scholar 

  4. Bauchau O (1983) Optimal design of high speed rotating graphite/epoxy shafts. J Compos Mater 17(3):170–181

    Article  Google Scholar 

  5. Bert CW (1993) The effect of bending-twisting coupling on the critical speed of a driveshaft. In: Proceedings 6th Japan-US conference on composite materials, Orlando, FL, Techonomic, Lancaster, PA, pp 29–36

    Google Scholar 

  6. Chandramouli G, Gupta K, Pandey RK (1994) Delamination propagation in rotating carbon-epoxy composite shafts. Eng Fract Mech 49(1):121–132

    Article  Google Scholar 

  7. Chang C-Y, Chang M-Y, Huang JH (2004) Vibration analysis of rotating composite shafts containing randomly oriented reinforcements. Compos Struct 63:21–32

    Article  Google Scholar 

  8. Chang M-Y, Chen J-K, Chang C-Y (2004) A simple spinning laminated composite shaft model. Int J Solids Struct 41:637–662

    Article  MATH  MathSciNet  Google Scholar 

  9. Chatelet E, Lornage D, Jacquet-Richardet G (2002) A three dimensional modeling of the dynamic behavior of composite rotors. Int J Rotating Mach 8(3):185–192

    Article  Google Scholar 

  10. Chen L-W, Peng W-K (1998) Dynamic stability of rotating composite shaft under periodical axial compressive loads. J Sound Vib 212(2):215–230

    Article  MathSciNet  Google Scholar 

  11. Chen L-W, Peng W-K (1998) The stability behavior of rotating composite shaft under axial compressive loads. Compos Struct 41:253–263

    Article  Google Scholar 

  12. Frederick JR, Darlow MS (1991) Operation of torsionally loaded composite shaft above two flexural critical speeds. In: 13th biennial conference on mechanical vibration and noise, presented at 1991 ASME design technical conference, Miami, FL, USA, vol 36, pp 247–255

    Google Scholar 

  13. Gubran HBH (2000) Dynamic stress analysis and optimization studies on fibre- reinforced composite shafts. In: Ph.D. thesis, mechanical engineering department, Indian Institute of Technology (IIT) Delhi, India

    Google Scholar 

  14. Gubran HBH (2005) Dynamics of hybrid shafts. Mech Res Commun 32(4):368–374

    Article  MATH  Google Scholar 

  15. Gubran HBH, Bahashwan AA, Gupta K (2002) Dynamic stress analysis in fibre- reinforced composite shafts with axially varying fibre layup and wall thickness. Univ Aden J Nat Appl Sci 6(1):131–146

    Google Scholar 

  16. Gubran HBH, Gupta K (2002) Composite shaft optimization using simulated annealing part i: natural frequency. Int J Rotating Mach IJRM 8(4):275–284

    Article  Google Scholar 

  17. Gubran HBH, Gupta K (2002c) Composite shaft optimization using simulated annealing part ii: strength and stresses. Int J Rotating Mach IJRM 8(4):285–293

    Google Scholar 

  18. Gubran HBH, Gupta K (2005) The effect of stacking sequence and coupling mechanisms on the natural frequencies of composite shafts. J Sound Vib 282:231–248

    Article  Google Scholar 

  19. Gubran HBH, Gupta K (2014) Design optimization of automotive propeller shafts. J Vib Eng Technol 2(1):35–45

    Google Scholar 

  20. Gubran HBH, Singh SP, Gupta K (2000) Stresses in composite shafts subjected to unbalance excitation and transmitted torque. Int J Rotating Mach 6(4):235–244

    Article  Google Scholar 

  21. Gupta K (1998) Some issues relating to design and development of an all composite aero gas turbine engine rotor. Def Sci J 48(1):93–98

    Google Scholar 

  22. Gupta K, Singh SP (1998) Damping measurements in fiber reinforced composite rotors. J Sound Vib 211(3):513–520

    Article  Google Scholar 

  23. Hetherington EL, Kraus RE, Darlow MS (1990) Demonstration of a super critical composite helicopter power transmission shaft. J Am Helicopter Soc 35(1):23–28

    Google Scholar 

  24. Ingle RB, Ahuja BB (2006) An experimental investigation on dynamic analysis of high speed carbon–epoxy shaft in aerostatic conical journal bearings. Compos Sci Technol 66:604–612

    Article  Google Scholar 

  25. Jacquet-Richardet G, Chatelet E, Nouri-Baranger T (2011) Rotating internal damping in the case of composite shafts. In: Proceedings of IUTAM symposium on emerging trends in rotor dynamics, IIT Delhi, India

    Google Scholar 

  26. Jeal RH (1988) Meeting the high temperature challenge-the nonmetallic aeroengine. Metals Mater 4:539–542

    Google Scholar 

  27. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis Inc, Philadelphia

    Google Scholar 

  28. Kim W, Argento A, Scott RA (1999) Free vibration of a rotating tapered composite timoshenko shaft. J Sound Vib 226(1):125–147

    Article  Google Scholar 

  29. Khalid YA, Mutasher SA, Sahari BB, Hamouda AMS (2007) Bending fatigue behavior of hybrid aluminum/composite drive shafts. Mater Des 28:329–334

    Article  Google Scholar 

  30. Lee DG, Choi JK (2000) Design and manufacture of an aerostatic spindle bearing system with fiber-epoxy composites. J Comput Mater 34:1150–1175

    Article  Google Scholar 

  31. Lee DG, Hwang HY, Kim JK (2003) Design and manufacture of a carbon fiber epoxy rotating boring bar. Compos Struct 60:115–124

    Article  Google Scholar 

  32. Lee DG, Kim HS, Kim JW, Kim JK (2004) Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Compos Struct 63:87–99

    Article  Google Scholar 

  33. Lim JW, Darlow MS (1986) Optimal sizing of composite power transmission shafting. J Am Helicopter Soc 31(1):75–83

    Article  Google Scholar 

  34. Montagnier O, Hochard C (2005a) Design of supercritical composite helicopter driveshafts: theoretical and experimental study. In: European conference for aerospace sciences (EUCASS)

    Google Scholar 

  35. Montagnier O, et Hochard C (2005b) Etude théorique et expérimentale de la Dynamique des arbres de transmission supercritiques, 17èmecongrès Français de Mécanique, Troyes, 29 Août-2

    Google Scholar 

  36. Montagnier O, Hochard Ch (2008) Optimization of supercritical carbon/epoxy drive shafts using a genetic algorithm. In: 13th European conference on composite materials, Stockholm, Sweden

    Google Scholar 

  37. Montagnier O, Hochard Ch (2006) Design of hybrid high modulus/high resistance carbon fibers driveshafts—subcritical and supercritical solutions. In: 12th European conference on composite materials, Biarritz, France

    Google Scholar 

  38. Montagnier O, Hochard C (2013) Optimisation of hybrid high-modulus/high-strength carbon fibre reinforced plastic composite drive shafts. Mater Des 46:88–100

    Article  Google Scholar 

  39. Montagnier O, Hochard C (2014) Dynamics of a supercritical composite shaft mounted on viscoelastic supports. J Sound Vib 333:470–484

    Article  Google Scholar 

  40. Na S, Yoon H, Liviu L (2006) Effect of taper ratio on vibration and stability of a composite thin-walled spinning shaft. Thin Walled Struct 44:362–371

    Article  Google Scholar 

  41. Rangaswamy T, Vijayarangan S, Chandrashekar RA, Anantharaman K (2004) Optimal design and analysis of automotive composite drive shaft. In: Proceeding of international symposium of research students on materials science and engineering, Madras, India

    Google Scholar 

  42. Roos C, Bakis CE (2011) Multi-physics design and optimization of flexible matrix composite driveshafts. Compos Struct 93:2231–2240

    Article  Google Scholar 

  43. Salzar RS (1999) Design considerations for rotating laminated metal-matrix-composite shafts. Compos Sci Technol 59:883–896

    Article  Google Scholar 

  44. Singh SP (1992) Some studies on dynamics of composite shafts. In: Ph.D. thesis, mechanical engineering department, Indian Institute of Technology (IIT) Delhi, India

    Google Scholar 

  45. Singh SP, Gubran HBH, Gupta K (1997) Developments in dynamics of composite material shafts. Int J Rotating Mach 3(3):189–198

    Article  Google Scholar 

  46. Singh SP, Gupta K (1994) Free damped flexural vibration analysis of composite cylindrical tubes using beam and shell theories. J Sound Vib 172(2):171–190

    Article  MATH  Google Scholar 

  47. Singh SP, Gupta K (1995) Experimental studies on composite shafts. In: Proceedings of the international conference on advances in mechanical engineering, Bangalore, India, pp 1205–1221

    Google Scholar 

  48. Singh SP, Gupta K (1996) Composite shaft rotordynamic analysis using a layerwise theory. J Sound Vib 191(5):739–756

    Article  Google Scholar 

  49. Singh SP, Gupta K (1996) Rotordynamic experiments on composite shafts. ASTM J Compos Technol Res 18(4):256–264

    Article  Google Scholar 

  50. Sino R, Baranger TN, Chatelet E, Jacquet G (2008) Dynamic analysis of a rotating composite shaft. Compos Sci Technol 68:337–345

    Article  Google Scholar 

  51. Sino R, Chatelet E, Baranger TN, Jaquet-Richardet G (2006) Stability analysis of internally damped rotating composite shafts considering transversal shear. In: Proceedings of ISROMAC—11, Honolulu, Hawaii USA

    Google Scholar 

  52. Tsai SW (1988) Composites design, 4th edn. Ohio, USA

    Google Scholar 

  53. Vance John M (1988) Dynamics of turbomachinery. Wiley, New York

    Google Scholar 

  54. Wettergren HL (1997) Influence of imperfections on the eigenfrequencies of a rotating composite shaft. J Sound Vib 204(1):99–116

    Article  MATH  Google Scholar 

  55. Wu XX, Sun CT (1989) Vibration of thin walled composite structures. In: Vibration of Composite Structures, 14. ASME, New York, pp 47–52

    Google Scholar 

  56. Zinberg H, Symmonds MF (1970) The development of an advanced composite tail rotor driveshaft. In: Presented at 26th annual national forum of American helicopter society, Washington, DC

    Google Scholar 

  57. Zorzi ES, Giordano JC (1985) Composite shaft rotor dynamic evaluation. In: Presented at ASME design engineering conference on mechanical vibrations and noise, Sept. 1985, ASME paper no. 85-DET-114, pp 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gupta, K. (2015). Composite Shaft Rotor Dynamics: An Overview. In: Sinha, J. (eds) Vibration Engineering and Technology of Machinery. Mechanisms and Machine Science, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-09918-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09918-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09917-0

  • Online ISBN: 978-3-319-09918-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics