Skip to main content
Book cover

Leptin pp 117–129Cite as

Leptin and the Kidney

  • Chapter
  • First Online:
  • 1419 Accesses

Abstract

The kidneys play a vital role in the metabolism and clearance of leptin. As renal failure ensues, leptin clearance is reduced causing elevated leptin levels. Chronic inflammation is common in chronic kidney disease (CKD), and may also contribute to the development of hyperleptinemia. Type 2 Diabetes Mellitus or glucose intolerance present in up to half of patients with CKD; insulin and growth hormone may contribute to stimulation of leptin production in patients with CKD. The method of dialysis for patients with end-stage renal disease (ESRD) also plays a role in the likelihood and severity of hyperleptinemia, while renal transplantation has been shown to rapidly normalize leptin levels. This chapter examines prevalence and severity of hyperleptinemia in CKD and ESRD, the factors which increase or decrease leptin levels, and metabolic and clinical significance of leptin changes in CKD, ESRD, and renal transplant recipients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    CAS  PubMed  Google Scholar 

  2. Katz AI, Emmanouel DS. Metabolism of polypeptide hormones by the normal kidney and in uremia. Nephron. 1978;22:69–80.

    CAS  PubMed  Google Scholar 

  3. Dinarello CA. Interleukin-1 and tumor necrosis factor and their naturally occurring antagonists during hemodialysis. Kidney Int Suppl. 1992;38:S68–77.

    CAS  PubMed  Google Scholar 

  4. Macdonald C, Rush DN, Bernstein KN, et al. Production of tumor necrosis factor alpha and hemodialysis. Nephron. 1993;65:273–7.

    CAS  PubMed  Google Scholar 

  5. Zumbach MS, Boehme MW, Wahl P, et al. Tumor necrosis factor increases serum leptin levels in humans. J Clin Endocrinol Metab. 1997;82:4080–2.

    CAS  PubMed  Google Scholar 

  6. Kobayashi S, Maesato K, Moriya H, et al. Insulin resistance in patients with chronic kidney disease. Am J Kidney Dis. 2005;45:275–80.

    CAS  PubMed  Google Scholar 

  7. Chen J, Muntner P, Hamm LL, et al. Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol. 2003;14:469–77.

    CAS  PubMed  Google Scholar 

  8. Kolaczynski JW, Nyce MR, Considine RV, et al. Acute and chronic effects of insulin on leptin production in humans: studies in vivo and in vitro. Diabetes. 1996;45:699–701.

    CAS  PubMed  Google Scholar 

  9. Askari H, Liu J, Dagogo-Jack S. Hormonal regulation of human leptin in vivo: effects of hydrocortisone and insulin. Int J Obes Relat Metab Disord. 2000;24:1254–9.

    CAS  PubMed  Google Scholar 

  10. Cumin F, Baum HP, Levens N. Mechanism of leptin removal from the circulation by the kidney. J Endocrinol. 1997;155:577–85.

    CAS  PubMed  Google Scholar 

  11. Cumin F, Baum HP, Levens N. Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord. 1996;20:1120–6.

    CAS  PubMed  Google Scholar 

  12. Zeng J, Patterson BW, Klein S, et al. Whole body leptin kinetics and renal metabolism in vivo. Am J Physiol. 1997;273(6 Pt 1):E1102–6.

    CAS  PubMed  Google Scholar 

  13. Landt M, Martin DR, Zeng J, et al. Plasma leptin concentrations are only transiently increased in nephrectomized rats. Am J Physiol. 1998;275(3 Pt 1):E495–9.

    CAS  PubMed  Google Scholar 

  14. Landt M, Ludbrook PA, Billadello JJ. Role of protein binding in renal elimination of leptin. Clin Endocrinol (Oxf). 2003;59:44–8.

    CAS  Google Scholar 

  15. Klein S, Coppack SW, Mohamed-Ali V, et al. Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes. 1996;45:984–7.

    CAS  PubMed  Google Scholar 

  16. Hama H, Saito A, Takeda T, et al. Evidence indicating that renal tubular metabolism of leptin is mediated by megalin but not by the leptin receptors. Endocrinology. 2004;145:3935–40.

    CAS  PubMed  Google Scholar 

  17. Sharma K, Considine RV, Michael B, et al. Plasma leptin is partly cleared by the kidney and is elevated in hemodialysis patients. Kidney Int. 1997;51:1980–5.

    CAS  PubMed  Google Scholar 

  18. Fruehwald-Schultes B, Kern W, Beyer J, Forst T, Pfützner A, Peters A. Elevated serum leptin concentrations in type 2 diabetic patients with microalbuminuria and macroalbuminuria. Metabolism. 1999;48:1290–3.

    CAS  PubMed  Google Scholar 

  19. Okpechi IG, Pascoe MD, Swanepoel CR, Rayner BL. Microalbuminuria and the metabolic syndrome in non-diabetic black Africans. Diab Vasc Dis Res. 2007;4:365–7.

    PubMed  Google Scholar 

  20. Merabet E, Dagogo-Jack S, Coyne DW, et al. Increased plasma leptin concentration in end-stage renal disease. J Clin Endocrinol Metab. 1997;82:847–50.

    CAS  PubMed  Google Scholar 

  21. Heimbürger O, Lönnqvist F, Danielsson A, Nordenström J, Stenvinkel P. Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J Am Soc Nephrol. 1997;8:1423–30.

    PubMed  Google Scholar 

  22. Howard JK, Lord GM, Clutterbuck EJ, Ghatei MA, Pusey CD, Bloom SR. Plasma immunoreactive leptin concentration in end-stage renal disease. Clin Sci (Lond). 1997;93:119–26.

    CAS  Google Scholar 

  23. Dagogo-Jack S, Ovalle F, Geary B, Landt M, Coyne DW. 1998 Hyperleptinemia in patients with end-stage renal disease treated by continuous ambulatory peritoneal dialysis. Perit Dial Int. 1998;18:34–40.

    CAS  PubMed  Google Scholar 

  24. Nordfors L, Lönnqvist F, Heimbürger O, Danielsson A, Schalling M, Stenvinkel P. Low leptin gene expression and hyperleptinemia in chronic renal failure. Kidney Int. 1998;54:1267–75.

    CAS  PubMed  Google Scholar 

  25. Landt M, Parvin CA, Dagogo-Jack S, Bryant B, Coyne DW. Leptin elimination in hyperleptinaemic peritoneal dialysis patients. Nephrol Dial Transplant. 1999;14:732–7.

    CAS  PubMed  Google Scholar 

  26. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269:540–3.

    CAS  PubMed  Google Scholar 

  27. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269:543–6.

    CAS  PubMed  Google Scholar 

  28. Licinio J, Caglayan S, Ozata M. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A. 2004;101:4531–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Menon V, Wang X, Greene T, et al. Factors associated with serum leptin in patients with chronic kidney disease. Clin Nephrol. 2004;61:163–9.

    CAS  PubMed  Google Scholar 

  31. Sarnak MJ, Poindexter A, Wang SR, et al. Serum C-reactive protein and leptin as predictors of kidney disease progression in the Modification of Diet in Renal Disease Study. Kidney Int. 2002;62:2208–15.

    CAS  PubMed  Google Scholar 

  32. Shankar A, Syamala S, Xiao J, Muntner P. Relationship between plasma leptin level and chronic kidney disease. Int J Nephrol. 2012;2012:269532. doi:10.1155/2012/269532. Epub 2012 May 14.

    PubMed Central  PubMed  Google Scholar 

  33. Grunfeld C, Zhao C, Fuller J, Pollack A, Moser A, Friedman J, Feingold KR. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest. 1996;97:2152–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Coyne DW, Dagogo-Jack S, Klein S, Merabet E, Audrain J, Landt M. High-flux dialysis lowers plasma leptin concentration in chronic dialysis patients. Am J Kidney Dis. 1998;32:1031–5.

    CAS  PubMed  Google Scholar 

  35. van Tellingen A, Grooteman MP, Schoorl M, ter Wee PM, Bartels PC, Schoorl M, van der Ploeg T, Nubé MJ. Enhanced long-term reduction of plasma leptin concentrations by super-flux polysulfone dialysers. Nephrol Dial Transplant. 2004;19:1198–203.

    PubMed  Google Scholar 

  36. Mandolfo S, Borlandelli S, Imbasciati E. Leptin and beta2-microglobulin kinetics with three different dialysis modalities. Int J Artif Organs. 2006;29:949–55.

    CAS  PubMed  Google Scholar 

  37. Eknoyan G, Beck GJ, Cheung AK, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347:2010–9.

    PubMed  Google Scholar 

  38. Cheung AK, Sarnak MJ, Yan G, et al. Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int. 2004;65:2380–9.

    PubMed  Google Scholar 

  39. Arkouche W, Juillard L, Delawari E, et al. Peritoneal clearance of leptin in continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1999;34:839–44.

    CAS  PubMed  Google Scholar 

  40. Taskapan MC, Taskapan H, Sahin I, Keskin L, Atmaca H, Ozyalin F. Serum leptin, resistin, and lipid levels in patients with end stage renal failure with regard to dialysis modality. Ren Fail. 2007;29:147–54.

    CAS  PubMed  Google Scholar 

  41. Fontán MP, Rodríguez-Carmona A, Cordido F, García-Buela J. Hyperleptinemia in uremic patients undergoing conservative management, peritoneal dialysis, and hemodialysis: a comparative analysis. Am J Kidney Dis. 1999;34:824–31.

    PubMed  Google Scholar 

  42. Teta D, Maillard M, Tedjani A, Passlick-Deetjen J, Burnier M. The effect of pH-neutral peritoneal dialysis fluids on adipokine secretion from cultured adipocytes. Nephrol Dial Transplant. 2007;22:862–9.

    CAS  PubMed  Google Scholar 

  43. Landt M, Brennan DC, Parvin CA, Flavin KS, Dagogo-Jack S, Coyne DW. Hyperleptinaemia of end-stage renal disease is corrected by renal transplantation. Nephrol Dial Transplant. 1998;13:2271–5.

    CAS  PubMed  Google Scholar 

  44. Souza GC, Costa CA, Gonçalves LF, Manfro RC. Leptin serum levels in the first year post-renal transplantation. Transplant Proc. 2007;39:439–40.

    CAS  PubMed  Google Scholar 

  45. Kokot F, Adamczak M, Wiecek A, et al. Plasma immunoreactive leptin and neuropeptide Y levels in kidney transplant patients. Am J Nephrol. 1999;19:28.

    CAS  PubMed  Google Scholar 

  46. Kaycan SM, Yildiz A, Kazancioglu R, et al. The changes in serum leptin, body fat mass and insulin resistance after renal transplantation. Clin Transplant. 2003;17:63.

    Google Scholar 

  47. El Haggan W, Chauveau P, Barthe N, et al. Serum leptin, body fat, and nutritional markers during the six months post-Kidney transplantation. Metabolism. 2004;53:614.

    PubMed  Google Scholar 

  48. Lane JT, Dagogo-Jack S. Approach to the patient with new-onset diabetes after transplant (NODAT). J Clin Endocrinol Metab. 2011;96:3289–97.

    CAS  PubMed  Google Scholar 

  49. Stenvinkel P, Heimbürger O, Lönnqvist F. Serum leptin concentrations correlate to plasma insulin concentrations independent of body fat content in chronic renal failure. Nephrol Dial Transplant. 1997;12:1321–5.

    CAS  PubMed  Google Scholar 

  50. Dunbar JC, Hu Y, Lu H. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes. 1997;46:2040–3.

    CAS  PubMed  Google Scholar 

  51. Beltowski J, Wojcicka G, Marciniak A, et al. Oxidative stress, nitric oxide production, and renal sodium handling in leptin-induced hypertension. Life Sci. 2004;74:2987–3000.

    CAS  PubMed  Google Scholar 

  52. Fruhbeck G. Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes. 1999;48:903–8.

    CAS  PubMed  Google Scholar 

  53. Hadtstein C, Schaefer F. Hypertension in children with chronic kidney disease: pathophysiology and management. Pediatr Nephrol. 2008;23:363–71.

    PubMed Central  PubMed  Google Scholar 

  54. Haynes WG, Morgan DA, Walsh SA, et al. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100:270–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Selthofer-Relatic K, Radic R, Vizjak V, et al. Hyperleptinemia–non-haemodynamic risk factor for the left ventricular hypertrophy development in hypertensive overweight females. Coll Antropol. 2008;32:681–5.

    CAS  PubMed  Google Scholar 

  56. Konstantinides S, Schafer K, Koschnick S, et al. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest. 2001;108:1533–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Paoletti E, Bellino D, Cassottana P, et al. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am J Kidney Dis. 2005;46:320–7.

    PubMed  Google Scholar 

  58. Stack AG, Saran R. Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am J Kidney Dis. 2002;40:1202–10.

    PubMed  Google Scholar 

  59. Harnett JD, Parfrey PS, Griffiths SM, et al. Left ventricular hypertrophy in end-stage renal disease. Nephron. 1988;48:107–15.

    CAS  PubMed  Google Scholar 

  60. Goodkin DA, Bragg-Gresham JL, Koenig KG, et al. Association of comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and the United States: the Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol. 2003;14:3270–7.

    PubMed  Google Scholar 

  61. Bottinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27:309–20.

    CAS  PubMed  Google Scholar 

  62. Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis. 2005;12:353–65.

    PubMed  Google Scholar 

  63. Wolf G, Chen S, Han DC, et al. Leptin and renal disease. Am J Kidney Dis. 2002;39:1–11.

    CAS  PubMed  Google Scholar 

  64. Wolf G, Hamann A, Han DC, et al. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int. 1999;56:860–72.

    CAS  PubMed  Google Scholar 

  65. Kalantar-Zadeh K, Block G, Humphreys MH, et al. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808.

    PubMed  Google Scholar 

  66. Kalantar-Zadeh K, Ikizler TA, Block G, et al. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis. 2003;42:864–81.

    PubMed  Google Scholar 

  67. Odamaki M, Furuya R, Yoneyama T, et al. Association of the serum leptin concentration with weight loss in chronic hemodialysis patients. Am J Kidney Dis. 1999;33:361–8.

    CAS  PubMed  Google Scholar 

  68. Young GA, Woodrow G, Kendall S, et al. Increased plasma leptin/fat ratio in patients with chronic renal failure: a cause of malnutrition? Nephrol Dial Transplant. 1997;12:2318–23.

    CAS  PubMed  Google Scholar 

  69. Zhang Y, Thamer M, Stefanik K, et al. Epoetin requirements predict mortality in hemodialysis patients. Am J Kidney Dis. 2004;44:866–76.

    CAS  PubMed  Google Scholar 

  70. Szczech LA, Barnhart HX, Inrig JK, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74:791–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gainsford T, Willson TA, Metcalf D, et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci U S A. 1996;93:14564–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Umemoto Y, Tsuji K, Yang FC, et al. Leptin stimulates the proliferation of murine myelocytic and primitive hematopoietic progenitor cells. Blood. 1997;90:3438–43.

    CAS  PubMed  Google Scholar 

  73. Axelsson J, Qureshi AR, Heimburger O, et al. Body fat mass and serum leptin levels influence epoetin sensitivity in patients with ESRD. Am J Kidney Dis. 2005;46:628–34.

    CAS  PubMed  Google Scholar 

  74. Nasri H. Association of serum leptin with anemia in maintenance hemodialysis patients. Saudi J Kidney Dis Transpl. 2006;17:521–5.

    PubMed  Google Scholar 

  75. Kotanko P, Thijssen S, Levin NW. Association between erythropoietin responsiveness and body composition in dialysis patients. Blood Purif. 2008;26:82–9.

    CAS  PubMed  Google Scholar 

  76. Dagogo-Jack S. Glycemic control and chronic diabetes complications. In: Umpierrez GE, editor. Therapy for diabetes mellitus and related disorders. 6th ed. Alexandria, VA: American Diabetes Association; 2014. p. 668–95.

    Google Scholar 

  77. Emilsson V, Liu YL, Cawthorne MA, et al. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes. 1997;46:313–6.

    CAS  PubMed  Google Scholar 

  78. Segal KR, Landt M, Klein S. Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes. 1996;45:988–91.

    CAS  PubMed  Google Scholar 

  79. Askari H, Tykodi G, Liu J, Dagogo-Jack S. Fasting plasma leptin level is a surrogate measure of insulin sensitivity. J Clin Endocrinol Metab. 2010;95:3836–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. KDIGO. Clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  81. Shoben AB, Rudser KD, de Boer IH, et al. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol. 2008;19:1613–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kovesdy CP, Ahmadzadeh S, Anderson JE, et al. Association of activated vitamin D treatment and mortality in chronic kidney disease. Arch Intern Med. 2008;168:397–403.

    CAS  PubMed  Google Scholar 

  83. Gutierrez O, Isakova T, Rhee E, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16:2205–15.

    CAS  PubMed  Google Scholar 

  84. Teng M, Wolf M, Lowrie E, et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349:446–56.

    CAS  PubMed  Google Scholar 

  85. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006;70:771–80.

    CAS  PubMed  Google Scholar 

  88. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Outcomes associated with serum phosphorus level in males with non-dialysis dependent chronic kidney disease. Clin Nephrol. 2010;73:268–75.

    CAS  PubMed  Google Scholar 

  89. Schumock GT, Andress DL, Marx SE, et al. Association of secondary hyperparathyroidism with CKD progression, health care costs and survival in diabetic predialysis CKD patients. Nephron Clin Pract. 2009;113:c54–61.

    CAS  PubMed  Google Scholar 

  90. Martin A, de Vittoris R, David V, et al. Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology. 2005;146:3652–9.

    CAS  PubMed  Google Scholar 

  91. Reseland JE, Syversen U, Bakke I, et al. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res. 2001;16:1426–33.

    CAS  PubMed  Google Scholar 

  92. Thomas T, Gori F, Khosla S, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.

    CAS  PubMed  Google Scholar 

  93. Tsuji K, Maeda T, Kawane T, et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha, 25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res. 2010;25:1711–23.

    CAS  PubMed  Google Scholar 

  94. Coen G, Ballanti P, Fischer MS, et al. Serum leptin in dialysis renal osteodystrophy. Am J Kidney Dis. 2003;42:1036–42.

    CAS  PubMed  Google Scholar 

  95. Zoccali C, Panuccio V, Tripepi G, et al. Leptin and biochemical markers of bone turnover in dialysis patients. J Nephrol. 2004;17:253–60.

    CAS  PubMed  Google Scholar 

  96. Ahmadi F, Salari S, Maziar S, et al. Relationship between serum leptin levels and bone mineral density and bone metabolic markers in patients on hemodialysis. Saudi J Kidney Dis Transpl. 2013;24:41–7.

    PubMed  Google Scholar 

  97. Pasco JA, Henry MJ, Kotowicz MA, et al. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001;86:1884–7.

    CAS  PubMed  Google Scholar 

  98. Kontogianni MD, Dafni UG, Routsias JG, et al. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004;19:546–51.

    CAS  PubMed  Google Scholar 

  99. Park JT, Yoo TH, Kim JK, et al. Leptin/adiponectin ratio is an independent predictor of mortality in nondiabetic peritoneal dialysis patients. Perit Dial Int. 2013;33:67–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Carrero JJ, Nakashima A, Qureshi AR, et al. Protein-energy wasting modifies the association of ghrelin with inflammation, leptin, and mortality in hemodialysis patients. Kidney Int. 2011;79:749–56.

    CAS  PubMed  Google Scholar 

  101. Diez JJ, Bossola M, Fernandez-Reyes MJ, et al. Relationship between leptin and all-cause and cardiovascular mortality in chronic hemodialysis patients. Nefrologia. 2011;31:206–12.

    PubMed  Google Scholar 

  102. Kalantar-Zadeh K, Fouque D, Kopple JD. Outcome research, nutrition, and reverse epidemiology in maintenance dialysis patients. J Ren Nutr. 2004;14:64–71.

    PubMed  Google Scholar 

  103. Aguilera A, Bajo MA, Rebollo F, et al. Leptin as a marker of nutrition and cardiovascular risk in peritoneal dialysis patients. Adv Perit Dial. 2002;18:212–7.

    CAS  PubMed  Google Scholar 

  104. Scholze A, Rattensperger D, Zidek W, et al. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity (Silver Spring). 2007;15(6):1617–22.

    CAS  Google Scholar 

  105. Dagogo-Jack S. Uremic hyperleptinemia: adaptive or maladaptive. Kidney Int. 1998;54:997–8.

    CAS  PubMed  Google Scholar 

  106. Grooteman MP, van den Dorpel MA, Bots ML, et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol. 2012;23:1087–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ok E, Asci G, Toz H, et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant. 2013;28:192–202.

    PubMed  Google Scholar 

  108. Maduell F, Moreso F, Pons M, et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013;24:487–97.

    PubMed Central  PubMed  Google Scholar 

  109. Dagogo-Jack S, Franklin SC, Vijayan A, Liu J, Askari H, Miller SB. Recombinant human insulin-like growth factor-I (IGF-I) therapy decreases plasma leptin concentration in patients with chronic renal insufficiency. Int J Obes. 1998;22:1110–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Coyne M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pandey, R., Mutneja, A., Coyne, D.W., Dagogo-Jack, S. (2015). Leptin and the Kidney. In: Dagogo-Jack, MD, S. (eds) Leptin. Springer, Cham. https://doi.org/10.1007/978-3-319-09915-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09915-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09914-9

  • Online ISBN: 978-3-319-09915-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics