Skip to main content

Moduli Spaces of Phylogenetic Trees Describing Tumor Evolutionary Patterns

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

Abstract

Cancers follow a clonal Darwinian evolution, with fitter subclones replacing more quiescent cells, ultimately giving rise to macroscopic disease. High-throughput genomics provides the opportunity to investigate these processes and determine specific genetic alterations driving disease progression. Genomic sampling of a patient’s cancer provides a molecular history, represented by a phylogenetic tree. Cohorts of patients represent a forest of related phylogenetic structures. To extract clinically relevant information, one must represent and statistically compare these collections of trees. We propose a framework based on an application of the work by Billera, Holmes and Vogtmann on phylogenetic tree spaces to the case of unrooted trees of intra-individual cancer tissue samples. We observe that these tree spaces are globally nonpositively curved, allowing for statistical inference on populations of patient histories. A projective tree space is introduced, permitting visualizations of evolutionary patterns. Published data from four types of human malignancies are explored within our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J.: The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society 44, 139–177 (1982)

    MATH  MathSciNet  Google Scholar 

  2. Alexandrov, A.: Über eine verallgemeinerung der riemannschen geometrie. Schr. Forschungsinst. Math. Berlin 1, 33–84 (1957)

    Google Scholar 

  3. Billera, L.J., Holmes, S.P., Vogtmann, K.: Geometry of the Space of Phylogenetic Trees. Advances in Applied Mathematics 27(4), 733–767 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D., Stebbings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L., McBride, D.J., Varela, I., Nik-Zainal, S.A., Leroy, C., Jia, M., Menzies, A., Butler, A.P., Teague, J.W., Griffin, C.A., Burton, J., Swerdlow, H., Quail, M.A., Stratton, M.R., Iacobuzio-Donahue, C., Futreal, P.A.: The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319), 1109–1113 (2010)

    Article  Google Scholar 

  5. Carlotti, E., Wrench, D., Matthews, J., Iqbal, S., Davies, A., Norton, A., Hart, J., Lai, R., Montoto, S., Gribben, J.G., Lister, T.A., Fitzgibbon, J.: Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone. Blood 113(15), 3553–3557 (2009)

    Google Scholar 

  6. Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey, J.K., Young, M.A., Lamprecht, T., McLellan, M.D., McMichael, J.F., Wallis, J.W., Lu, C., Shen, D., Harris, C.C., Dooling, D.J., Fulton, R.S., Fulton, L.L., Chen, K., Schmidt, H., Kalicki-Veizer, J., Magrini, V.J., Cook, L., McGrath, S.D., Vickery, T.L., Wendl, M.C., Heath, S., Watson, M.A., Link, D.C., Tomasson, M.H., Shannon, W.D., Payton, J.E., Kulkarni, S., Westervelt, P., Walter, M.J., Graubert, T.A., Mardis, E.R., Wilson, R.K., DiPersio, J.F.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–510 (2012)

    Article  Google Scholar 

  7. Li, S., Hricik, T., Chung, S.S., Bar, H., Brown, A.L., Patel, J.P., Rapoport, F., Liu, L., Sheridan, C., Ishii, J., Zumbo, P., Gandara, J., Lewis, I.D., To, L.B., Becker, M.W., Guzman, M.L., D’Andrea, R.J., Michor, F., Park, C.Y., Carroll, M., Levine, R.L., Mason, C.E., Melnick, A.M.: Epigenetic deregulation in relapsed acute myeloid leukemia. Blood 122(21), 2499 (2013)

    Google Scholar 

  8. Miller, E., Owen, M., Provan, J.S.: Polyhedral computational geometry for averaging metric phylogenetic trees (2014)

    Google Scholar 

  9. Ohtake, S., Miyawaki, S., Fujita, H., Kiyoi, H., Shinagawa, K., Usui, N., Okumura, H., Miyamura, K., Nakaseko, C., Miyazaki, Y., Fujieda, A., Nagai, T., Yamane, T., Taniwaki, M., Takahashi, M., Yagasaki, F., Kimura, Y., Asou, N., Sakamaki, H., Handa, H., Honda, S., Ohnishi, K., Naoe, T., Ohno, R.: Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSG AML201 Study. Blood 117(8), 2358–2365 (2011)

    Article  Google Scholar 

  10. Okosun, J., Bödör, C., Wang, J., Araf, S., Yang, C.Y., Pan, C., Boller, S., Cittaro, D., Bozek, M., Iqbal, S., Matthews, J., Wrench, D., Marzec, J., Tawana, K., Popov, N., O’Riain, C., O’Shea, D., Carlotti, E., Davies, A., Lawrie, C.H., Matolcsy, A., Calaminici, M., Norton, A., Byers, R.J., Mein, C., Stupka, E., Lister, T.A., Lenz, G., Montoto, S., Gribben, J.G., Fan, Y., Grosschedl, R., Chelala, C., Fitzgibbon, J.: Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nature Genetics 46(2), 176–181 (2014)

    Article  Google Scholar 

  11. Owen, M., Provan, J.: A fast algorithm for computing geodesic distances in tree space. IEEE/ACM Transactions on Computational Biology, 1–18 (2011)

    Google Scholar 

  12. Pasqualucci, L., Khiabanian, H., Fangazio, M., Vasishtha, M., Messina, M., Holmes, A.B., Ouillette, P., Trifonov, V., Rossi, D., Tabbò, F., Ponzoni, M., Chadburn, A., Murty, V.V., Bhagat, G., Gaidano, G., Inghirami, G., Malek, S.N., Rabadan, R., Dalla-Favera, R.: Genetics of follicular lymphoma transformation. Cell Reports 6(1), 130–140 (2014)

    Article  Google Scholar 

  13. Sturm, K.: Probability measures on metric spaces of nonpositive curvature. Contemporary Mathematics, 1–34 (2003)

    Google Scholar 

  14. Tzoneva, G., Perez-Garcia, A., Carpenter, Z., Khiabanian, H., Tosello, V., Allegretta, M., Paietta, E., Racevskis, J., Rowe, J.M., Tallman, M.S., Paganin, M., Basso, G., Hof, J., Kirschner-Schwabe, R., Palomero, T., Rabadan, R., Ferrando, A.: Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nature medicine 19(3), 368–371 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zairis, S., Khiabanian, H., Blumberg, A.J., Rabadan, R. (2014). Moduli Spaces of Phylogenetic Trees Describing Tumor Evolutionary Patterns. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_48

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics