Skip to main content

Self-Organized Regularity in Long-Range Systems

  • Chapter
  • First Online:
Nonlinear Dynamics New Directions

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 12))

Abstract

Dynamics of many-body long-range interacting systems are investigated. Using the XY-Hamiltonian mean-field model as a case study, we show that regular trajectories, associated with invariant tori of the single-particle dynamics emerge as the number of particles is increased. Moreover, the construction of stationary solutions as well as studies of the maximal Lyapunov exponent of the systems show the same trend towards integrability. This feature provides a dynamical interpretation of the emergence of long-lasting out-of-equilibrium regimes observed generically in long-range systems. Extensions beyond the mean-field system are considered and display similar features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not differentiate between the observable M and its statistical average \(\langle M\rangle\), for simplicity in notations, except when needed

  2. 2.

    Note that even if one accounts for the linear stability criteria, there are still large sets of distributions which shall generate quasi-stationary dynamics.

  3. 3.

    Actually due to numerical error we renormalize to \((N+\sqrt{N}/4)\tilde{\rho}\), which is in range with expected typical fluctuations.

  4. 4.

    A comparison with higher scheme has been made and gave identical results.

  5. 5.

    Note that \(1/\log(N)\) scalings are also good, and can be explained by the fact that the typical time scale in the separatrix can be estimated from the period of regular motion of the last regular trajectory \(T\sim\log(\delta E)\sim\log(\delta M)\sim\log(N)\).

  6. 6.

    This approximation can be rigorously justified via a detailed expansion see [36] for details.

  7. 7.

    Actually only the ones with \(\kappa<\kappa_c\).

References

  1. Metzger, B., Nicolas, M., Guazzelli, E.: Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283–301 (2007)

    Article  MATH  Google Scholar 

  2. Marchioro, C., Pulvirenti, M.: Mathematical theory of uncompressible nonviscous fluids. In: John, F., Marsden, J.E., Sirovich, L. (eds.) Applied Mathematical Science, vol. 96. Springer, New York (1994)

    Google Scholar 

  3. Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  4. Benisti, D., Gremillet, L.: Nonlinear plasma response to a slowly varying electrostatic wave, and application to stimulated Raman scattering. Phys. Plasmas 14(4), 042304 (2007)

    Google Scholar 

  5. Bonifacio, R., Casagrande, F., Cerchioni, G., Souza, L.D., Pierini, P., Piovella, N.: Physics of the high-gain FEL and superradiance. Riv. Del Nuovo Cimento. 13(9), 1–69 (1990)

    Google Scholar 

  6. Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds.): Dynamics and Thermodynamics of Systems with Long Range Interactions. Lecture Notes in Physics, vol. 602. Springer-Verlag, Berlin (2002)

    Google Scholar 

  7. Pettini, M.: Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics. Interdisciplinary Applied Mathematics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  8. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chavanis, P.H., Ninno, G.D., Fanelli, D., Ruffo, S.: Out of equilibrium phase transitions in mean-field hamiltonian dynamics. In: Chandre, C., Leoncini, X., Zaslavsky, G. (eds.) Chaos, Complexity and Transport, pp. 3–26. World Scientific, Singapore (2008)

    Google Scholar 

  10. Lynden-Bell, D.: Statidtical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101–121 (1967)

    Article  Google Scholar 

  11. Leoncini, X., Van den Berg, T.L., Fanelli, D.: Out-of-equilibrium solutions in the XY-Hamiltonian mean-field model. Europhys. Lett. 86(2), 20002 (2009)

    Google Scholar 

  12. Bachelard, R., Chandre, C., Fanelli, D., Leoncini, X., Ruffo, S.: Abundance of regular orbits and nonequilibrium phase transitions in the thermodynamic limit for long-range systems. Phys. Rev. Lett. 101(26), 260603 (2008)

    Google Scholar 

  13. Inagaki, S., Konishi, T.: Dynamical stability of a simple model similar to self-gravitating systems. Publ. Astron. Soc. Jpn. 45, 733–135 (1993)

    Google Scholar 

  14. Pichon, C.: Mécanismes de structuration gravitationnelle: Théorie et estimation. Ph.D. thesis, Université Pierre et Marie Curie and Institut d’Astrophysique de Paris (1999)

    Google Scholar 

  15. Antoni, M., Ruffo, S.: Clustering and relaxation in Hamiltonian long-range dynamics. Phys. Rev. E 52(3), 3261 (1995)

    Article  Google Scholar 

  16. Elskens, Y., Escande, D.F.: Microscopic Dynamics of Plasmas and Chaos. IoP, Bristol (2002)

    Google Scholar 

  17. Bachelard, R., Manos, T., de Buyl, P., Staniscia, F., Cataliotti, F.S., Ninno, G.D., Fanelli, D., Piovella, N.: Experimental perspectives for systems based on long-range interactions. J. Stat. Mech. P06009 (2010)

    Google Scholar 

  18. Fermi, E., Pasta, J., Ulam, S.: Los Alamos Reports (LA-1940) (1955)

    Google Scholar 

  19. Leoncini, X., Verga, A., Ruffo, S.: Hamiltonian dynamics and the phase transition of the xy model. Phys. Rev. E 57(6), 6377 (1998)

    Google Scholar 

  20. Van den Berg, T.L.: Systèmes avec interactions à longue portée. Master’s thesis, Université Paris VII (2008)

    Google Scholar 

  21. de Buyl, P., Mukamel, D., Ruffo, S.: Self-consistent steady states in Hamiltonian mean field dynamics. Phys. Rev. E 84, 061151 (2010). http://arxiv.org/abs/1012.2594v1; http://arxiv.org/pdf/1012.2594v1

  22. Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems, 2nd edn. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  23. Barré, J., Bouchet, F., Ruffo, S., Dauxois, T., Yamaguchi, Y.: Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model. Phys. A 337, 36–66 (2004)

    Article  Google Scholar 

  24. Bouchet, F., Dauxois, T.: Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics. Phys. Rev. E 72, 045103 (2005)

    Google Scholar 

  25. Julien, B., Freddy, B., Thierry, D., Stefano, R., Yoshiyuki, Y.: The Vlasov equation and the Hamiltonian mean-field model. Physica. A 365, 177–183 (2006)

    Google Scholar 

  26. Barr é, J., Olivetti, A., Yamaguchi, Y.Y.: Dynamics of perturbations around inhomogeneous backgrounds in the HMF model. J. Stat. Mech. 8, 28 P08002 (2010)

    Google Scholar 

  27. Staniscia, F., Dauxois, T., Ninno, G.D., Ruffo, S., Bachelard, R.: Stability of inhomogeneous states in mean-field models with an external potential. J. Stat. Mech. P03022 (2011)

    Google Scholar 

  28. McLachlan, R.I., Atela, P.: The accuracy of symplectic integrators. Nonlinearity 5, 541 (1992)

    Article  MathSciNet  Google Scholar 

  29. Latora, V., Rapisarda, A., Ruffo, S.: Lyapunov instability and finite size effects in a system with long-range forces. Phys. Rev. Lett. 80(4), 692 (1998)

    Article  Google Scholar 

  30. Firpo, M.C.: Analytic estimation of Lyapunov exponent in a mean-field model undergoing a phase transition. Phys. Rev. E 57, 6599 (1998)

    Google Scholar 

  31. Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2345 (1976)

    Article  Google Scholar 

  32. Tsiganis, K., Anastasiadis, A., Varvoglis, H.: On the relation between the maximal LCN and the width of the stochastic layer in a driven pendulum. J. Phys. A: Math. Gen. 32, 431 (1999)

    Article  Google Scholar 

  33. Anteneodo, C., Tsallis, C.: Breakdown of the exponential sensitivity to initial conditions: role of the range of the interactions. Phys. Rev. Lett. 80, 5313 (1998)

    Article  Google Scholar 

  34. Tamarit, F., Anteneodo, C.: Rotators with long-range interactions: connection with the mean-field approximation. Phys. Rev. Lett. 84(2), 208–211 (2000)

    Article  Google Scholar 

  35. Campa, A., Giansanti, A., Moroni, D.: Canonical solution of classical magnetic models with long-range couplings. J. Phys. A Math. Gen. 36, 6897 (2003)

    Article  MathSciNet  Google Scholar 

  36. Van den Berg, T.L., Fanelli, D., Leoncini, X.: Stationary states and fractional dynamics in systems with long range interactions. EPL 89, 50010 (2010)

    Google Scholar 

  37. Campa, A., Giansanti, A., Moroni, D.: Metastable states in a class of long-range Hamiltonian systems. Phys. A 305, 137 (2002)

    Google Scholar 

  38. Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. (2006) 11(8) 885–898 (2011)

    Article  MathSciNet  Google Scholar 

  39. Zaslavsky, G.M., Edelman, M., Tarasov, V.E.: Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos. Chaos 17(4), 043124 (2007)

    Google Scholar 

  40. Afraimovich, V., Zaslavsky, G.M.: Space-time complexity in Hamiltonian dynamics. Chaos 13(2), 519–532 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Chavanis, P.H.: Lynden-Bell and Tsallis distributions for the HMF model. Eur. Phys. J. B 53(4), 487 (2006)

    Google Scholar 

  42. Bachelard, R., Antoniazzi, A., Chandre, C., Fanelli, D., Leoncini, X., Vittot, M.: Stabilizing the intensity of a wave amplified by a beam of particles. Eur. Phys. J. D 42, 125–132 (2007)

    Article  Google Scholar 

  43. Colson, W.: Theory of a free electron laser. Phys. Lett. A 59, 187 (1976)

    Article  Google Scholar 

  44. Casagrande, F., Bonifacio, R., Pellegrini, C.: Hamiltonian model of a free-electron laser. Opt. Commun. 61, 55 (1987)

    Google Scholar 

  45. Bonifacio, R., De Salvo Souza, L.: Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms. Nucl. Instrum. Meth. A 341, 360 (1994)

    Google Scholar 

  46. Bonifacio, R., De Salvo Souza, L., Narducci, L. M., D’Angelo, E.J.: Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A 50, 1716 (1994)

    Google Scholar 

  47. Turchi, A.: Dynamics and statistics of systems with long range interactions: Application to 1-dimensional toy-models. Ph.D. thesis, Aix-Marseille Université and Univesita Degli Studi di Firenze (2012)

    Google Scholar 

  48. de Nigris, S.: Hamiltonian Dynamics of XY rotators model interacting on a Small World Network. Master’s thesis, Aix-Marseille Université (2011)

    Google Scholar 

Download references

Acknowledgements

I am grateful to Romain Bachelard for a careful reading of the manuscript, suggesting corrections, references, and extensions to the original text. I am also thankful to him for preparing Figs. 5 and 6. His input was much appreciated. Most of the work presented in this chapter is shared with my coauthors: Duccio Fanelli, Tineke Van den Berg, Stefano Ruffo, Cristel Chandre. I use this occasion to thank them again. Discussions about the possible implications of self-organized regularity first occurred between the author and George M. Zaslavsky, in November 2007, and I take this opportunity to express my gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Leoncini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leoncini, X. (2015). Self-Organized Regularity in Long-Range Systems. In: González-Aguilar, H., Ugalde, E. (eds) Nonlinear Dynamics New Directions. Nonlinear Systems and Complexity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09864-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09864-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09863-0

  • Online ISBN: 978-3-319-09864-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics