Skip to main content

On Topological and Hyperbolic Properties of Systems with Homoclinic Tangencies

  • Chapter
  • First Online:
Book cover Nonlinear Dynamics New Directions

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 12))

  • 1059 Accesses

Abstract

We study dynamical properties of a set Λ of trajectories from a small neighbourhood of a non-transversal Poincaré homoclinic orbit. We show that this problem has no univalent solution, as it takes place in the case of a transversal homoclinic orbit. Here different situations are possible, depending on the character of the homoclinic tangency, when Λ is trivial or contains topological (hyperbolic) horseshoes. In this chapter we find certain conditions for existence of both types of dynamics and give a description (in term of the symbolic dynamics) of the corresponding non-trivial hyperbolic subsets from Λ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the case \(\sigma=1\) (i.e. O is a neutral saddle) is very specific and we do not consider it here. We only refer the reader to papers [9, 12, 21] in which various cases of neutral saddles (\(\sigma=1\)) with homoclinic tangencies were analysed; see also papers [10, 14, 15] in which area-preserving maps were considered.

  2. 2.

    Note that if \(\gamma<0\), then condition (2) can hold only when \(W^s_{loc}\) contains l u . Thus, in this case, any isolated one-sided tangency is, in fact, a tangency “from above”. On the other hand, if \(\gamma>0\), condition (2) allows a big variety of non-isolated tangencies.

  3. 3.

    For example in the case of tangency “from above”, the topological (geometrical) horseshoe of map T k (for every value of k from an infinite sequence of integers) contains an T k -invariant subset Δ k such that the system \({T_k}|\Delta_k\) is uniformly hyperbolic and topologically conjugate to a subshift of finite type with positive topological entropy.

  4. 4.

    We thank D. Turaev who attracted our attention to the interesting fact that the Katok theorem can be directly applied to the sectionally dissipative case. See also [35].

  5. 5.

    Therefore, in problems of such type, it is not reasonable to use a C 1-linearization (which, by the way, does not always exist in the multidimensional case). This can lead to non-repairable mistakes in the proofs or to absurd results, and, in the best case, only very rough topological properties can be established [32, 4].

  6. 6.

    We include also sequences with \(j_i=\infty\) or \(j_{i+1}=\infty\). Then such sequences contain infinite strings from zeros either on the left or, respectively, right end and correspond either α- or ω-asymptotic orbit to the fixed point \((\dots,0,\dots,0,\dots)\).

  7. 7.

    Thus, the diffeomorphisms with partial description in the main case \(\sigma\neq 1\) are such that conditions A–D are valid and the following combinations of signs of the parameters \(\lambda_1,\gamma, c\) and d are excluded: (1) those ones which correspond to the trivial class, i.e. n is even and (i) \(\gamma>0, d<0\) if \(\sigma<1\), (ii) \(\lambda_1>0, dc>0\) if \(\sigma>1\); and (2) those ones which correspond to the complete class, i.e (iii) \(\gamma>0,\lambda_1>0, c<0,d>0\) with even n and (iv) \(\gamma>0,\lambda_1>0, c<0\) with odd n.

  8. 8.

    This result was proved also in [6] for the sectionally dissipative case \(\sigma<1\).

References

  1. Afraimovich, V.S.: On smooth changes of variables. Methods of Qualitative Theory of Differential Equations, Gorky State University, pp. 10–21 (1984) (in Russian)

    Google Scholar 

  2. Afraimovich, V.S., Shilnikov, L.P.: On singular orbits of dynamical systems. Uspekhi Math. Nauk 27(3), 189–190 (1972)

    Google Scholar 

  3. Afraimovich, V.S., Shilnikov, L.P.: On critical sets of Morse–Smale systems. Trans. Mosc. Math Soc. 28, 179–212 (1973)

    Google Scholar 

  4. Afraimovich, V., Young, T.: Multipliers of homoclinic tangencies and a theorem of Gonchenko and Shilnikov on area preserving maps. Int. J. Bifurc. Chaos 15(11), 3589–3594 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gavrilov, N.K., Shilnikov, L.P.: On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve, Part 1. Math. USSR Sb. 17, 467–485 (1972) (Part 2, Math. USSR Sb. 19, 139–156 (1973))

    Article  Google Scholar 

  6. Gonchenko, S.V.: Non-trivial hyperbolic subsets of multidimensional systems with a nontransversal homoclinic curve. Methods of Qualitative Theory of Differential Equations. Gorky State University, pp. 89–102 (1984) (in Russian)

    Google Scholar 

  7. Gonchenko, S.V.: Dynamics and moduli of Ω-conjugacy of 4D-diffeomorphisms with a structurally unstable homoclinic orbit to a saddle-focus fixed point. Am. Math. Soc. Transl. 200(2), 107–134 (2000)

    MathSciNet  Google Scholar 

  8. Gonchenko, S.V.: Dynamical systems with homoclinic tangencies, Ω-moduli and bifurcations. Doctor of Physics and Mathematical Sciences Thesis, Nizhny Novgorod, p. 300 (2004) (in Russian)

    Google Scholar 

  9. Gonchenko, S.V., Gonchenko, V.S.: On bifurcations of birth of closed invariant curves in the case of two-dimensional diffeomorphisms with homoclinic tangencies. Proc. Math. Steklov Inst. 244, 80–105 (2004)

    MathSciNet  Google Scholar 

  10. Gonchenko, M.S., Gonchenko, S.V.: On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies. Reg. Chaot. Dyn. 14(1), 116–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gonchenko, S.V., Shilnikov, L.P.: On dynamical systems with structurally unstable homoclinic curves. Sov. Math. Dokl. 33, 234–238 (1986)

    MATH  Google Scholar 

  12. Gonchenko, S.V., Shilnikov, L.P.: Arithmetic properties of topological invariants of systems with a structurally unstable homoclinic trajectory. J. Ukr. Math. 39, 21–28 (1987)

    Article  MathSciNet  Google Scholar 

  13. Gonchenko, S.V., Shilnikov, L.P.: On moduli of systems with a nontransversal Poincaré homoclinic orbit. Russ. Acad. Sci. Izv. Math. 41(3), 417–445 (1993)

    MathSciNet  Google Scholar 

  14. Gonchenko, S.V., Shilnikov, L.P.: On two-dimensional area-preserving mappings with homoclinic tangencies. Russ. Acad. Sci. Dokl. Math. 63(3), 395–399 (2001)

    MathSciNet  Google Scholar 

  15. Gonchenko, S.V., Shilnikov, L.P.: On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. Notes of S.-Peterburg. Branch of Math. Steklov Inst. (POMI) 300, 155–166 (2003)

    Google Scholar 

  16. Gonchenko, S.V., Shilnikov, L.P.: Homoclinic tangencies. Thematic issue: Moscow-Izhevsk, p. 52–4 (2007) (in Russian)

    Google Scholar 

  17. Gonchenko, S.V., Turaev, D.V., Shilnikov, L.P.: On models with a structurally unstable homoclinic curve. Sov. Math. Dokl. 44(2), 422–426 (1992)

    MathSciNet  Google Scholar 

  18. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: On models with non-rough Poincaré homoclinic curves. Phys. D 62(1–4), 1–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gonchenko, S.V., Turaev, D.V., Shilnikov, L.P.: Dynamical phenomena in multi-dimensional systems with a non-rough Poincaré homoclinic curve. Russ. Acad. Sci. Dokl. Math. 47(3), 410–415 (1993)

    MathSciNet  Google Scholar 

  20. Gonchenko, S.V., Turaev, D.V., Shilnikov, L.P.: Homoclinic tangencies of any order in Newhouse regions. J. Math. Sci. 105, 1738–1778 (2001)

    Article  Google Scholar 

  21. Gonchenko, S.V., Meiss, J.D., Ovsyannikov, I.I.: Chaotic dynamics of three-dimensional Henon maps that originate from a homoclinic bifurcation. Regul. Chaot. Dyn. 11(2), 191–212 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gonchenko, S., Shilnikov, L., Turaev, D.: Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps.Nonlinearity 20, 241–275 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. Nonlinearity 21(5), 923–972 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gonchenko, S., Li, M.-C., Malkin, M.: On hyperbolic dynamics of multidimensional systems with homoclinic tangencies of arbitrary orders. (to appear)

    Google Scholar 

  25. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Google Scholar 

  26. Homburg, A.J., Weiss, H.: A geometric criterion for positive topological entropy II: Homoclinic tangencies. Commun. Math. Phys. 208, 267–273 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Leontovich, E.A.: On a birth of limit cycles from a separatrix loop. Sov. Math. Dokl. 78(4), 641–644 (1951)

    Google Scholar 

  28. Leontovich, E.A.: Birth of limit cycles from a separatrix loop of a saddle of a planar system in the case of zero saddle value. Preprint VINITI, p. 11–4 (1988) (in Russian)

    Google Scholar 

  29. Ivanov, B.F.: Towards existence of closed trajectories in a neighbourhood of a homoclinic curve. J. Diff. Eq. 15(3), 548–550 (1979) (in Russian)

    MATH  Google Scholar 

  30. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. IHES Publ. Math. 51, 137–173 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. Newhouse, S.E, Palis, J., Takens, F.: Bifurcations and stability of families of diffeomorphisms. IHES Publ. Math. 57, 5–72 (1984)

    Article  Google Scholar 

  32. Rayskin, V.: Homoclinic tangencies in \(\mathbb{R}^n\). Discret. Contin. Dyn. Syst. 12(3), 465–480 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shilnikov, L.P.: On a Poincaré–Birkhoff problem. Math. USSR Sb. 3, 91–102 (1967)

    Article  Google Scholar 

  34. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics, Part I. World Scientific, Singapore (1998) (Part II, 2001)

    Book  MATH  Google Scholar 

  35. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V.: On some mathematical topics in classical synchronization. A tutorial. Int. J. Bifurc. Chaos 14(7), 2143–2160 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Turaev, D.V.: On dimension of non-local bifurcational problems. Int. J. Bifurc. Chaos 6, 919–948 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank M. Malkin and D. Turaev for very fruitful discussions. AG and SG have been partially supported by the Russian Scientific Foundation Grant 14-41-00044 and the grants of RFBR No.13-01-00589, 13-01-97028-povolzhye and 14-01-00344. ML was partially supported by a NSC research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Gonchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonchenko, S., Gonchenko, A., Li, MC. (2015). On Topological and Hyperbolic Properties of Systems with Homoclinic Tangencies. In: González-Aguilar, H., Ugalde, E. (eds) Nonlinear Dynamics New Directions. Nonlinear Systems and Complexity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09864-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09864-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09863-0

  • Online ISBN: 978-3-319-09864-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics