Skip to main content

Patterns of Synchrony in Neuronal Networks: The Role of Synaptic Inputs

  • Chapter
  • First Online:
  • 1080 Accesses

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 12))

Abstract

We study the role of network architecture and synaptic inputs in the formation of synchronous clusters in synaptically coupled networks of bursting neurons. Through analysis and numerics, we show that the stability of the completely synchronous state, representing the largest cluster, only depends on the number of synaptic inputs each neuron receives, independent from all other details of the network topology. We also give a simple combinatorial algorithm that finds synchronous clusters from the network topology. We demonstrate that networks with a certain degree of internal symmetries are likely to have cluster decompositions with relatively large clusters, leading potentially to cluster synchronization at the mesoscale network level. We address the asymptotic stability of cluster synchronization in excitatory networks of bursting neurons and derive explicit thresholds for the coupling strength that guarantees stable cluster synchronization.

Dedicated to Valentin S. Afraimovich on the occasion of his 65th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sporns, O.: Brain connectivity. Scholarpedia 2(10), 469–5 (2007)

    Google Scholar 

  2. Watts, D.J., Strogatz, S.H.: Collective dynamics of 'small-world` networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  3. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  4. Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Stochastic synchronization of oscillations in dissipative systems. Izv. Vuzov. Radiofiz. 29, 795 (1986)

    Google Scholar 

  5. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 210–9 (1998)

    Article  Google Scholar 

  7. Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 05410–1 (2002)

    Article  Google Scholar 

  8. Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 01410–1 (2003)

    Article  Google Scholar 

  9. Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica (Amsterdam) 195D, 159 (2004)

    Google Scholar 

  10. Almendral, J., Leyva, I., Daqing, L., Sendina-Nadal, I., Shlomo, H., Boccaletti, S.: Dynamics of overlapping structures in modular networks. Phys. Rev. E 82, 01611–5 (2010)

    Article  Google Scholar 

  11. Rodriguez-Caso, C., Corominas-Murtra, B., Sole, R.V.: On the basic computational structure of gene regulatory networks. Mol. Biosyst. 5(12), 1617–1629 (2009)

    Article  Google Scholar 

  12. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  13. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  14. Afraimovich, V.S., Bunimovich, L.A.: Dynamical networks: Interplay of topology, interactions and local dynamics. Nonlinearity 20(7), 176–1 (2007)

    Article  MathSciNet  Google Scholar 

  15. Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos 14(4), 1123–1129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Afraimovich, V.S., Yong, T., Muezzinoglu, M.K., Rabinovich, M.I.: Nonlinear dynamics of emotion-cognition interaction: When emotion does not destroy cognition? Bull Math. Biol. 73(2), 266–284 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86(5), 1698–1702 (1989). (Bazhenov, M., Stopfer, M., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I., Sejnowski, T.J., and Laurent, G.: Neuron 30, 553 (2001); Mehta, M. R., Lee, A. K., and Wilson, M. A.: Nature 417, 741 (2002))

    Article  Google Scholar 

  18. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46(2) 233–253 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sherman, A., Rinzel, J.: Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA 89(6), 2471–2474 (1994)

    Article  Google Scholar 

  20. Sherman, A.: Anti-phase, asymmetric and aperiodic oscillations in excitable cells–I. Coupled bursters. Bull. Math. Biol. 56, 811–835 (1994)

    MATH  Google Scholar 

  21. Terman, D., Wang, D.: Global competition and local cooperation in a network of neural oscillators. Phys. (Amsterdam) 81D, 148–176 (1995)

    MathSciNet  Google Scholar 

  22. Rabinovich, M.I., Torres, J.J., Varona, P., Huerta, R., Weidman, P.: Origin of coherent structures in a discrete chaotic medium. Phys. Rev E 60, R1130–R1133 (1999)

    Article  Google Scholar 

  23. Izhikevich, E.M.: Synchronization of Elliptic Bursters. SIAM Rev. 43, 315–344 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rubin, J., Terman, D.: Synchronized bursts and loss of synchrony among heterogeneous conditional oscillators. SIAM J. Appl. Dyn. Sys. 1, 146 (2002)

    Google Scholar 

  25. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 07410–4 (2004)

    Google Scholar 

  26. de Vries, G., Sherman, A.: Beyond synchronization: Modulatory and emergent effects of coupling in square-wave bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 243–272. World Scientific Publishing, London (2005)

    Chapter  Google Scholar 

  27. Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 18810–1 (2005)

    Article  Google Scholar 

  28. Belykh, I., Shilnikov, A.: When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101(7), 07810–2 (2008)

    Article  Google Scholar 

  29. Shilnikov, A., Gordon, R., Belykh, I.: Polyrhythmic synchronization in bursting networking motifs. Chaos 18(3), 03712–0 (2008)

    Article  MathSciNet  Google Scholar 

  30. Jalil, S., Belykh, I., Shilnikov, A.: Fast reciprocal inhibition can synchronize bursting neurons. Phys. Rev. E 81, R04520–1 (2010)

    Article  MathSciNet  Google Scholar 

  31. Rinzel, J.: Lecture Notes in Biomathematics, vol. 71, pp. 251–291. Springer, Berlin (1987)

    Google Scholar 

  32. Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418 (1991)

    Google Scholar 

  33. Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57(3), 413–439 (1995)

    Article  MATH  Google Scholar 

  34. Belykh, V.N., Belykh, I.V., Colding-Joergensen, M., Mosekilde, E.: Homoclinic bifurcations leading to bursting oscillations in cell models. Eur. Phys. J. E 3(3), 205–219 (2000)

    Article  Google Scholar 

  35. Izhikevich, E.M.: Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94(4), 04810–1 (2005)

    Article  Google Scholar 

  37. Shilnikov, A., Calabrese, R., Cymbalyuk, G.: Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 05621–4 (2005)

    Article  MathSciNet  Google Scholar 

  38. Frohlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E 74, 03192–2 (2006)

    Google Scholar 

  39. Pogromsky, A.Yu., Nijmeijer, H.: Cooperative oscillatory behavior of mutually coupled dynamical systems. IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 48(2), 15–2 (2001).

    Article  MathSciNet  Google Scholar 

  40. Belykh, V., Belykh, I., Hasler, M.: Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E 62, 6332–6345 (2000)

    Article  MathSciNet  Google Scholar 

  41. Belykh, I., Belykh, V., Nevidin, K., Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13(1), 165–178 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dynam. Sys. 2(4), 609–646 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Golubitsky, M., Stewart, I., Torok, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dynam. Sys. 4(1), 78–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: The groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, Y., Golubitsky, M.: Two-color patterns of synchrony in lattice dynamical systems. Nonlinearity 18, 631–657 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Belykh, I., Hasler, M.: Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos 21(1), 01610–6 (2011)

    Article  MathSciNet  Google Scholar 

  47. Bollobas, B.: Modern Graph Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  48. Hindmarsh, J.L., Rose, M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

    Article  Google Scholar 

  49. Wang, X.-J.: Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica (Amsterdam) 62D, 263 (1993)

    Google Scholar 

  50. Shilnikov, A.L., Kolomiets, M.L.: Methods of the qualitative theory for the Hindmarsh–Rose model: A case study. Int. J. Bifurc. Chaos 18(8) 1 (2008)

    MathSciNet  Google Scholar 

  51. Storace, M., Linaro, D., de Lange, E.: The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18(3), 03312–8 (2008)

    Article  MathSciNet  Google Scholar 

  52. Bautin, N.N.: Behavior of Dynamical Systems Near the Boundary of Stability. Nauka Publ. House, Moscow (1984)

    MATH  Google Scholar 

  53. Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68, 393–407 (1993)

    Article  Google Scholar 

  54. Wang, X.F., Chen, G.: Synchronization in scale free dynamical networks: Robustness and fragility. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 54–62 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation under Grant DMS-1009744, the GSU Brains and Behavior program, and RFFI Grants N 2100-065268 and N 09-01-00498-a (to I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Belykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belykh, I., Hasler, M. (2015). Patterns of Synchrony in Neuronal Networks: The Role of Synaptic Inputs. In: González-Aguilar, H., Ugalde, E. (eds) Nonlinear Dynamics New Directions. Nonlinear Systems and Complexity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09864-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09864-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09863-0

  • Online ISBN: 978-3-319-09864-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics