Skip to main content

More Constructions of Re-splittable Threshold Public Key Encryption

  • Conference paper
Advances in Information and Computer Security (IWSEC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8639))

Included in the following conference series:

Abstract

The concept of threshold public key encryption (TPKE) with the special property called key re-splittability (re-splittable TPKE, for short) was introduced by Hanaoka et al. (CT-RSA 2012), and used as one of the building blocks for constructing their proxy re-encryption scheme. In a re-splittable TPKE scheme, a secret key can be split into a set of secret key shares not only once, but also multiple times, and the security of the TPKE scheme is guaranteed as long as the number of corrupted secret key shares under the same splitting is smaller than the threshold. In this paper, we show several new constructions of re-splittable TPKE scheme by extending the previous (ordinary) TPKE schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Arita, S., Tsurudome, K.: Construction of Threshold Public-Key Encryptions through Tag-Based Encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Boneh, D., Boyen, X., Halevi, S.: Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  5. Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Gan, Y., Wang, L., Wang, L., Pan, P., Yang, Y.: Efficient Construction of CCA-Secure Threshold PKE Based on Hashed Diffie-Hellman Assumption. Comput. J. 56(10), 1249–1257 (2013)

    Article  Google Scholar 

  7. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing Or: How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

    Google Scholar 

  8. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.: Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Libert, B., Yung, M.: Adaptively Secure Non-interactive Threshold Cryptosystems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 588–600. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Libert, B., Yung, M.: Non-interactive CCA-Secure Threshold Cryptosystems with Adaptive Security: New Framework and Constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ciphertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Wee, H.: Threshold and Revocation Cryptosystems via Extractable Hash Proofs. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ohata, S., Matsuda, T., Hanaoka, G., Matsuura, K. (2014). More Constructions of Re-splittable Threshold Public Key Encryption. In: Yoshida, M., Mouri, K. (eds) Advances in Information and Computer Security. IWSEC 2014. Lecture Notes in Computer Science, vol 8639. Springer, Cham. https://doi.org/10.1007/978-3-319-09843-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09843-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09842-5

  • Online ISBN: 978-3-319-09843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics