Advertisement

More Constructions of Re-splittable Threshold Public Key Encryption

  • Satsuya Ohata
  • Takahiro Matsuda
  • Goichiro Hanaoka
  • Kanta Matsuura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8639)

Abstract

The concept of threshold public key encryption (TPKE) with the special property called key re-splittability (re-splittable TPKE, for short) was introduced by Hanaoka et al. (CT-RSA 2012), and used as one of the building blocks for constructing their proxy re-encryption scheme. In a re-splittable TPKE scheme, a secret key can be split into a set of secret key shares not only once, but also multiple times, and the security of the TPKE scheme is guaranteed as long as the number of corrupted secret key shares under the same splitting is smaller than the threshold. In this paper, we show several new constructions of re-splittable TPKE scheme by extending the previous (ordinary) TPKE schemes.

Keywords

Threshold Public Key Encryption Key Re-splittability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Arita, S., Tsurudome, K.: Construction of Threshold Public-Key Encryptions through Tag-Based Encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Halevi, S.: Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Gan, Y., Wang, L., Wang, L., Pan, P., Yang, Y.: Efficient Construction of CCA-Secure Threshold PKE Based on Hashed Diffie-Hellman Assumption. Comput. J. 56(10), 1249–1257 (2013)CrossRefGoogle Scholar
  7. 7.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing Or: How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.: Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Libert, B., Yung, M.: Adaptively Secure Non-interactive Threshold Cryptosystems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 588–600. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Libert, B., Yung, M.: Non-interactive CCA-Secure Threshold Cryptosystems with Adaptive Security: New Framework and Constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ciphertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Wee, H.: Threshold and Revocation Cryptosystems via Extractable Hash Proofs. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Satsuya Ohata
    • 1
    • 2
  • Takahiro Matsuda
    • 2
  • Goichiro Hanaoka
    • 2
  • Kanta Matsuura
    • 1
  1. 1.The University of TokyoTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyIbarakiJapan

Personalised recommendations