Advertisement

Related Key Secure PKE from Hash Proof Systems

  • Dingding Jia
  • Bao Li
  • Xianhui Lu
  • Qixiang Mei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8639)

Abstract

In this paper we propose a framework for constructing public key encryption against related key attacks from hash proof systems in the standard model. Compared with the construction of Wee (PKC2012), our framework avoids the use of one-time signatures. We show that the schemes presented by Jia et al. (ProvSec2013) could fit into our framework. And we give more instantiations of the proposed framework based on the QR and DCR assumptions for affine key related functions.

Keywords

related key attack 4-wise independent hash subset membership problem hash proof system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Cash, D.: Pseudorandom Functions and Permutations Provably Secure against Related-Key Attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Cash, D., Miller, R.: Cryptography Secure against Related-Key Attacks and Tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011), Also Cryptology ePrint Archive, Report 2011/252CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Paterson, K.G., Thomson, S.: RKA Security beyond the Linear Barrier: IBE, Encryption and Signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem (1999)Google Scholar
  9. 9.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Compt. 33(1), 167–226 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Damgård, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded Tamper Resilience: How to Go beyond the Algebraic Barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Groth, J.: Cryptography in Subgroups of \(\mathbb{Z}_n^*\). In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Pseudorandom Generator from any One-way Function. SIAM J. Comput. 28(4), 1364–1396 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Hofheinz, D., Kiltz, E.: The Group of Signed Quadratic Residues and Applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Jia, D., Lu, X., Li, B., Mei, Q.: RKA Secure PKE Based on the DDH and HR Assumptions. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 271–287. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with Tamperable and Leaky Memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A New Randomness Extraction Paradigm for Hybrid Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 590–609. Springer, Heidelberg (2009); Also Cryptology ePrint Archive, 2008/304CrossRefGoogle Scholar
  21. 21.
    Knudsen, L.R.: Cryptanalysis of LOKI91. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  22. 22.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Naccache, D., Stern, J.: A New Public Key Cryptosystem based on Higher Residues. In: CCS 1998, pp. 59–66 (1998)Google Scholar
  24. 24.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Wee, H.: Public Key Encryption against Related Key Attacks. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dingding Jia
    • 1
  • Bao Li
    • 1
  • Xianhui Lu
    • 1
  • Qixiang Mei
    • 2
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.College of InformationGuangdong Ocean UniversityChina

Personalised recommendations