Advertisement

Characterization of EME with Linear Mixing

  • Nilanjan Datta
  • Mridul Nandi
Conference paper
  • 605 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8639)

Abstract

EME is a SPRP or strong pseudorandom permutation construction which uses a nonlinear mixing in between two encryption layers. The designers of EME have shown that the construction is not SPRP secure if the mixing layer of EME is replaced by any linear mixing over a binary field. In this paper, we complete their observation by showing SPRP-insecurity even if we have linear mixing over any non-binary prime field. We have some positive result that PRP (pseudorandom permutation) and online PRP security can be achieved for certain types of linear mixing functions. In fact, we fully characterize all those linear mixing for which (online) PRP security is achieved and demonstrate attacks for all other linear mixing functions.

Keywords

EME SPRP (online) PRP Distinguishing Attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    – (no editor): CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness, http://competitions.cr.yp.to/caesar.html. Citations here: §1.3
  2. 2.
    Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013). Citations here: §1.3 CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). Citations here: §2.2 CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining (2005), http://cr.yp.to/papers.html#easycbc. Citations here: §2.3
  5. 5.
    Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 293–309. Springer, Heidelberg (2006). Citations here: §1 CrossRefGoogle Scholar
  6. 6.
    Chakraborty, D., Sarkar, P.: HCH: A New Tweakable Enciphering Scheme Using the Hash-Encrypt-Hash Approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006). Citations here: §1 CrossRefGoogle Scholar
  7. 7.
    Datta, N., Nandi, M.: Misuse Resistant Parallel Authenticated Encryptions. To be published in ACISP 2014 (2013), http://eprint.iacr.org/2013/767. Citations here: §1.3, §3
  8. 8.
    Wang, P., Feng, D., Wu, W.: HCTR: A Variable-Input-Length Enciphering Mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188. Springer, Heidelberg (2005). Citations here: §1 CrossRefGoogle Scholar
  9. 9.
    Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). Citations here: §1, §1.1 CrossRefGoogle Scholar
  10. 10.
    Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). Citations here: §1, §1.1, §1.1, §1.1, §5 CrossRefGoogle Scholar
  11. 11.
    Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004). Citations here: §1 CrossRefGoogle Scholar
  12. 12.
    Halevi, S.: Invertible Universal Hashing and the TET Encryption Mode. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007). Citations here: §1CrossRefGoogle Scholar
  13. 13.
    Luby, M., Racko, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal of Computing, 373–386 (1988). Citations here: §1.1Google Scholar
  14. 14.
    McGrew, D., Fluhrer, S.: The Extended Codebook (XCB) Mode of Operation (2004), http://eprint.iacr.org/2004/278. Citations here: §1
  15. 15.
    Nandi, M.: A Simple and Unified Method of Proving Indistinguishability. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer, Heidelberg (2006). Citations here: §2.3 CrossRefGoogle Scholar
  16. 16.
    Nandi, M.: An Efficient SPRP-secure Construction based on Pseudo Random Involution (2008), http://eprint.iacr.org/2008/092. Citations here: §1
  17. 17.
    Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Racko revisited. Journal of Cryptology, 29–66 (1999). Citations here: §1Google Scholar
  18. 18.
    Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Sarkar, P.: Improving Upon the TET Mode of Operation. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007). Citations here: §1 CrossRefGoogle Scholar
  20. 20.
    Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. Journal of Cryptology, 249–286 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nilanjan Datta
    • 1
  • Mridul Nandi
    • 1
  1. 1.Indian Statistical InstituteKolkataIndia

Personalised recommendations