DPA Resilience of Rotation-Symmetric S-boxes

  • Muhammet Ali Evci
  • Selçuk Kavut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8639)


We regenerate the S-boxes that achieve the best possible trade-off between nonlinearity and differential uniformity in the class of 6×6 rotation-symmetric S-boxes (RSSBs) that are bijective, and then classify them in terms of transparency order. We find that although the transparency order ≥ 5.638 for the inverse function over \(\mathbb{F}_{2^6}\), which can also be considered as rotation-symmetric, there exist RSSBs with the same nonlinearity and differential uniformity as those of the inverse function, having transparency order as low as 5.238. Motivated by this, we perform a steepest-descent-like iterative search algorithm in the class of 8×8 RSSBs and attain S-boxes with nonlinearity 104, differential uniformity 6, and transparency orders noticeably better than that of the AES S-box. Finally, replacing the AES S-box with those found by the search algorithm, we implement differential power analysis (DPA) attacks on SASEBO-GII and give a comparison of the results.


Boolean Function Algebraic Degree Linear Cryptanalysis Symmetric Boolean Function Cryptographic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Carlet, C.: On Highly Nonlinear S-Boxes and Their Inability to Thwart DPA Attacks. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 49–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chakraborty, K., Maitra, S., Sarkar, S., Mazumdar, B., Mukhopadhyay, D.: Redefining the Transparency Order (2014),
  5. 5.
    Guilley, S., Hoogvorst, P., Pacalet, R.: Differential Power Analysis Model and Some Results. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., Kalam, A.A.E. (eds.) CARDIS 2004. IFIP, vol. 153, pp. 127–142. Springer, Boston (2004)CrossRefGoogle Scholar
  6. 6.
    Kavut, S., Yücel, M.D.: A New Algorithm for the Design of Strong Boolean Functions (in Turkish). In: First National Cryptology Symposium, METU, Ankara, Türkiye, pp. 95–105 (2005)Google Scholar
  7. 7.
    Kavut, S.: Results on Rotation-Symmetric S-boxes. Information Sciences 201, 93–113 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Blahut, R.E., Costello Jr., D., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 227–233. Springer, US (1994)CrossRefGoogle Scholar
  11. 11.
    Lewis, T.G., Payne, W.H.: Generalized Feedback Shift Register Pseudorandom Number Algorithm. Journal of the ACM (JACM) 20(3), 456–468 (1973)CrossRefzbMATHGoogle Scholar
  12. 12.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Constrained Search for a Class of Good Bijective S-boxes with Improved DPA Resistivity. IEEE Transactions on Information Forensics and Security 8(12), 2154–2163 (2013)CrossRefGoogle Scholar
  14. 14.
    Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Design and Implementation of Rotation Symmetric S-boxes with High Nonlinearity and High DPA Resiliency. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 87–92 (2013)Google Scholar
  15. 15.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis Attacks on Smartcards. In: USENIX Workshop on Smartcard Technology, pp. 151–161 (1999)Google Scholar
  16. 16.
    Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, Ł., Golub, M.: On Using Genetic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box. In: The First Workshop on Cryptography and Security in Computing Systems, CS2 2014, pp. 13–18. ACM, New York (2014)CrossRefGoogle Scholar
  18. 18.
    Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Countermeasures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Rijmen, V., Barreto, P.S.L.M., Filho, D.L.G.: Rotation Symmetry in Algebraically Generated Cryptographic Substitution Tables. Inf. Process. Lett. 106(6), 246–250 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Stănică, P., Maitra, S.: Rotation Symmetric Boolean Functions - Count and Cryptographic Properties. Discrete Applied Mathematics 156(10), 1567–1580 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Yücel, M.D.: Alternative Nonlinearity Criteria for Boolean Functions. Electrical and Electronics Engineering Department, Middle East Technical University, Memorandum No. 2001-1, Ankara, Turkey (2001)Google Scholar
  24. 24.
    Zhang, X.-M., Zheng, Y.: GAC - the Criterion for Global Avalanche Characteristics of Cryptographic Functions. Journal of Universal Computer Science 1(5), 320–337 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muhammet Ali Evci
    • 1
  • Selçuk Kavut
    • 2
  1. 1.Cyber Security Institute, Informatic and Information Security Research CenterTÜBİTAKKocaeliTurkey
  2. 2.Department of Electronics EngineeringGebze Institute of Technology – GYTEKocaeliTurkey

Personalised recommendations