Deterministic Hard Fault Attack on Trivium

  • Avijit Dutta
  • Goutam Paul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8639)


So far, the major work in fault attack on Trivium has been confined to the soft fault attacks where the attacker injects some faults at random position and at random time in the cipher state and analyze a simplified version of the cipher. Besides this, there is also some result on hard fault attack [Hu et al., 2009] on Trivium where the attacker sets the value 0 at any random position of 288 bit state of the cipher permanently. In this approach the key of the cipher is determined with success probability not less than 0.2291. In this paper, we introduce another type of hard fault attack, called a deterministic hard fault attack on Trivium, by setting the value 1 at three particular positions of 288 bit state permanently. We call it deterministic because the internal state is revealed deterministically. More specifically, we show that if we observe 117 original keystream and 236 faulty keystream, we can retrieve the original state of the cipher in 223.85 time with success probability 1.


Deterministic hard fault attack eSTREAM Fault attack Hard fault attack Stream cipher Trivium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Borghoff, J.: Mixed-integer Linear Programming in the Analysis of Trivium and Ktantan. Cryptology ePrint Archive, Report 2012/676Google Scholar
  3. 3.
    De Cannière, C., Preneel, B.: Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/30 (2005),
  4. 4.
    Hojsík, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Hojsík, M., Rudolf, B.: Floating fault analysis of Trivium. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hu, Y., Zhang, F., Zhang, Y.: Hard Fault Analysis of Trivium. Cryptology ePrint Archive, Report 2009/333Google Scholar
  8. 8.
    Khazaei, S., Hasanzadeh, M.M., Kiaei, M.S.: Linear Sequential Circuit Approximation of Grain and Trivium Stream Ciphers. Cryptology ePrint Archive, Report 2006/141Google Scholar
  9. 9.
    Maitra, S., Paul, G.: Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 306–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. Cryptology ePrint Archive, Report 2007/021Google Scholar
  11. 11.
    McDonald, C., Charnes, C., Pieprzyk, J.: An Algebraic Analysis of Trivium Ciphers based on the Boolean Satisfiability Problem. Cryptology ePrint Archive, Report 2007/129Google Scholar
  12. 12.
    Mohamed, M.S.E., Bulygin, S., Buchmann, J.: Improved Differential Fault Analysis of Trivium. In: Proceedings of the COSADE 2011-Second International Workshop on Constructuve Side-Channel Analysis and Secure Design (2011)Google Scholar
  13. 13.
    Mroczkowski, P., Szmidt, J.: Corrigendum to: The Cube Attack on Stream Cipher Trivium and Quadraticity Tests. Cryptology ePrint Archive, Report 2010/032Google Scholar
  14. 14.
    Priemuth-Schmid, D., Biryukov, A.: Slid Pairs in Salsa20 and Trivium. Cryptology ePrint Archive, Report 2008/405Google Scholar
  15. 15.
    Raddum, H.: Cryptanalytic results on Trivium. Technical Report 2006/039, The eSTREAM Project (March 27, 2006),
  16. 16.
    Teo, S., Wong, K.K., Bartlett, H., Simpson, L., Dawson, E.: Algebraic analysis of Trivium-like ciphers. Cryptology ePrint Archive, Report 2013/240Google Scholar
  17. 17.
    Wong, K.K., Bard, G.V.: Improved Algebraic Cryptanalysis of QUAD, Bivium and Trivium via Graph Partitioning on Equation Systems. Cryptology ePrint Archive, Report 2010/349Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Avijit Dutta
    • 1
  • Goutam Paul
    • 2
  1. 1.Dept. of Computer Science & EngineeringJadavpur UniversityKolkataIndia
  2. 2.Cryptology and Security Research Unit (CSRU), R. C. Bose Centre for Cryptology & SecurityIndian Statistical InstituteKolkataIndia

Personalised recommendations