Advertisement

How to Effectively Decrease the Resource Requirement in Template Attack?

  • Hailong Zhang
Conference paper
  • 663 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8639)

Abstract

Under the assumption that one has a reference device identical to the target device and thus be well capable of characterizing the power leakages of the target device, Template Attack (TA) is widely accepted to be the strongest power analysis attack. However, a disadvantage of TA is that, its resource requirement is usually large, i.e. in order to accurately characterize the power leakages of the target device, one usually needs to use a large number of power traces in profiling. In practice, the large resource requirement of TA hinders its application. Therefore, it is utmost important to effectively decrease the resource requirement of TA, and make it applicable in practice. In light of this, we propose Bivariate Template Attack (BTA) in this paper. The central idea of BTA is to consider the joint leakages of all interesting points in a pairwise manner. We note that, when the same interesting points are used, BTA and TA can characterize and exploit the same amount of power leakages. However, compared with TA, the resource requirement of BTA is usually small. In fact, both simulated and real experiments will verify that, compared with TA, BTA requires less power traces in profiling to reach the same key-recovery efficiency.

Keywords

Side Channel Attacks Power Analysis Attacks Template Attack Resource Requirement Key-Recovery Efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template Attacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Agrawal, D., Rao, J.R., Rohatgi, P., Schramm, K.: Templates as Master Keys. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 15–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bär, M., Drexler, H., Pulkus, J.: Improved Template Attacks. In: COSADE 2010 (2010)Google Scholar
  5. 5.
    Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Elaabid, M.A., Guilley, S.: Practical Improvements of Profiled Side-Channel Attacks on a Hardware Crypto-Accelerator. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 243–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Elsevier, New York (1990)zbMATHGoogle Scholar
  9. 9.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Template vs. Stochastic Methods - A Performance Analysis for Side Chennel Cryptanalysis. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A Proposition for Correlation Power Analysis Enhancement. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  16. 16.
    Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance Is Futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Whitnall, C., Oswald, E., Mather, L.: An Exploration of the Kolmogorov-Smirnov Test as a Competitor to Mutual Information Analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Ye, X., Eisenbarth, T.: Wide Collisions in Practice. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 329–343. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hailong Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingP.R. China
  2. 2.University of Chinese Academy of SciencesChina

Personalised recommendations