Skip to main content

Diamond Nanowires: Fabrication, Structure, Properties and Applications

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

Diamond is a wide band gap semiconductor exhibiting a combination of superior properties, such as negative electron affinity, chemical inertness, high Young’s modulus, the highest hardness and room-temperature thermal conductivity, etc. It is possible to control and enhance the fundamental properties of diamond by fabricating 1D diamond nanowires, due to the giant surface-to-volume ratio enhancements of 1D nanowires. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. In this chapter, we present a comprehensive, up-to-date review for the diamond nanowires, wherein we will give a discussing for their synthesis along with their structures, properties and applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005). doi:10.1038/nbt1138

    Google Scholar 

  2. Y. Cui, Q.Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001). doi:10.1126/science.1062711

    Google Scholar 

  3. V.V. Brazhkin, Interparticle interaction in condensed media: some elements are ‘more equal than others’. Phys. Usp. 52(4), 369–376 (2009). doi:10.3367/UFNe.0179.200904e.0393

    Google Scholar 

  4. R.F. Davis, Diamond Films and Coatings (Noyes Publications, New Jersey, 1992)

    Google Scholar 

  5. W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, J. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253–257 (2002). doi:10.1038/nmat779

    Google Scholar 

  6. Y. Zhou, J. Zhi, Y. Zou, W. Zhang, S.T. Lee, Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Anal. Chem. 80(11), 4141–4146 (2008). doi:10.1021/ac702417x

    Google Scholar 

  7. T. Watanabe, T.A. Ivandini, Y. Makide, A. Fujishima, Y. Einaga, Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Anal. Chem. 78(22), 7857–7860 (2006). doi:10.1021/ac060860j

    Google Scholar 

  8. A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79(22), 8608–8615 (2007). doi:10.1021/ac071519h

    Google Scholar 

  9. H. Gu, X.D. Su, K.P. Loh, Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. J. Phys. Chem. B 109(28), 13611–13618 (2005). doi:10.1021/jp050625p

    Google Scholar 

  10. W. Yang, J.E. Butler, J.N. Russell, R.J. Hamers, Interfacial electrical properties of DNA-modified diamond thin films: intrinsic response and hybridization-induced field effects. Langmuir 20(16), 6778–6787 (2004). doi:10.1021/la036460y

    Google Scholar 

  11. B. Rezek, D. Shin, C.E. Nebel, Properties of hybridized DNA arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes. Langmuir 23(14), 7626–7633 (2007). doi:10.1021/la0636661

    Google Scholar 

  12. H. Shiomi, Reactive ion etching of diamond in O-2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36(12B, Part 1), 7745–7748 (1997). doi:10.1143/JJAP.36.7745

    Google Scholar 

  13. H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a nanostructured diamond honeycomb film. Adv. Mater. 12(6), 444–447 (2000). doi:10.1002/(SICI)1521-4095(200003)12:6<444::AID-ADMA444>3.0.CO;2-K

    Google Scholar 

  14. R. Arenal, P. Bruno, D.J. Miller, M. Bleuel, J. Lal, D.M. Gruen, Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films. Phys. Rev. B 75(19), 195431 (2007). doi:10.1103/PhysRevB.75.195431

    Google Scholar 

  15. R. Arenal, G. Montagnac, P. Bruno, D.M. Gruen, Multiwavelength Raman spectroscopy of diamond nanowires present in n-type ultrananocrystalline films. Phys. Rev. B 76(24), 245316 (2007). doi:10.1103/PhysRevB.76.245316

    Google Scholar 

  16. Q.X. Liu, C.X. Wang, S.W. Li, J.X. Zhang, G.W. Yang, Nucleation stability of diamond nanowires inside carbon nanotubes: a thermodynamic approach. Carbon 42(3), 629–633 (2004). doi:10.1016/j.carbon.2003.12.082

    Google Scholar 

  17. A.S. Barnard, S.P. Russo, I.K. Snook, Surface structure of cubic diamond nanowires. Surf. Sci. 538(3), 204–210 (2003). doi:10.1016/S0039-6028(03)00733-7

    Google Scholar 

  18. C. Terashima, K. Arihara, S. Okazaki, T. Shichi, D.A. Tryk, T. Shirafuji, N. Saito, O. Takai, A. Fujisima, Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen etching. ACS Appl. Mater. Interfaces 3(2), 177–182 (2011). doi:10.1021/am1007722

    Google Scholar 

  19. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned diamond nanowires for DNA sensing. Angew. Chem. Int. Ed. 47(28), 5183–5185 (2008). doi:10.1002/anie.200801706

    Google Scholar 

  20. Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Smooth and high-rate reactive ion etching of diamond. Diam. Relat. Mater. 11(3–6), 824–827 (2002). doi:10.1016/S0925-9635(01)00617-3

    Google Scholar 

  21. E.S. Baik, Y.J. Baik, S.W. Lee, D. Jeon, Fabrication of diamond nano-whiskers. Thin Solid Films 377–378, 295–298 (2000). doi:10.1016/S0040-6090(00)01431-0

    Google Scholar 

  22. W. Smirnov, A. Kriele, N. Yang, C.E. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio- and electrochemistry. Diam. Relat. Mater. 19(2–3), 186–189 (2010). doi:10.1016/j.diamond.2009.09.001

    Google Scholar 

  23. N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013). doi:10.1016/j.elecom.2012.10.044

    Google Scholar 

  24. L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, Z.X. Wang, W. Zhang, J.G. Hu, Q.T. Li, Synthesis and characterization of diamond nanowires from carbon nanotubes. Diam. Relat. Mater. 14(3–7), 749–752 (2005). doi:10.1016/j.diamond.2005.01.025

    Google Scholar 

  25. L.T. Sun, J.L. Gong, D.Z. Zhu, Z.Y. Zhu, S.X. He, Diamond nanorods from carbon naotubes. Adv. Mater. 16(20), 1849–1853 (2004). doi:10.1002/adma.200400429

    Google Scholar 

  26. N. Dubrovinskaia, L. Dubrovinsky, Aggregated diamond nanorods, the densest and least compressible form of carbon. Appl. Phys. Lett. 87(8), 083106 (2005). doi:10.1063/1.2034101

    Google Scholar 

  27. C.H. Hsu, S.G. Cloutier, S. Palefsky, J. Xu, Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. Nano Lett. 10(9), 3272–3276 (2010). doi:10.1021/nl100616x

  28. G.S. Oehrlein, Reactive-ion etching. Phys. Today 39(10), 26–33 (1986). doi:10.1063/1.881066

    Google Scholar 

  29. C.Y. Li, A. Hatta, Preparation of diamond whiskers using Ar/O2 plasma etching. Diam. Relat. Mater. 14(11–12), 1780–1783 (2005). doi:10.1016/j.diamond.2005.09.031

    Google Scholar 

  30. M.Y. Liao, S. Hishita, E. Watanabe, S. Koizumi, Y. Koide, Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv. Mater. 22(47), 5393–5397 (2010). doi:10.1002/adma.201003074

    Google Scholar 

  31. Y. Tzeng, J. Wei, J.T. Woo, W. Lanford, Free-standing single-crystalline chemical vapor deposited diamond films. Appl. Phys. Lett. 63(16), 2216–2218 (1993). doi:10.1063/1.110531

    Google Scholar 

  32. E.S. Baik, Y.J. Baik, D. Jeon, Aligned diamond nanowhiskers. J. Mater. Res. 15(4), 923–926 (2000). doi:10.1557/JMR.2000.0131

    Google Scholar 

  33. Y.S. Zou, T. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92(5), 053105 (2008). doi:10.1063/1.2841822

    Google Scholar 

  34. W. Smirnov, A. Kriele, R. Hoffmann, E. Sillero, J. Hees, O.A. Williams, N. Yang, C. Kranz, C.E. Nebel, Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal. Chem. 83(12), 4936–4941 (2011). doi:10.1021/ac200659e

    Google Scholar 

  35. W. Janssen, E. Gheeraert, Dry etching of diamond nanowires using self-organized metal droplet masks. Diam. Relat. Mater. 20(3), 389–394 (2011). doi:10.1016/j.diamond.2011.01.037

    Google Scholar 

  36. S. Okuyama, S.I. Matsushita, A. Fujishima, Preparation of periodic microstructured diamond surfaces. Chem. Lett. 20(5), 534–535 (2000). doi:10.1246/cl.2000.534

  37. S. Okuyama, S.I. Matsushita, A. Fujishima, Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18(22), 8282–8287 (2002). doi:10.1021/la011107i

    Google Scholar 

  38. M. Yamaki, J. Higo, K. Nagayama, Size-dependent separation of colloidal particles in 2-dimensional convective self-assembly. Langmuir 11(8), 2975–2978 (1995). doi:10.1021/la00008a021

    Google Scholar 

  39. C.D. Dushkin, P.A. Kralchevsky, V.N. Paunov, H. Yoshimura, K. Nagayama, Torsion balance for measurement of capillary immersion forces. Langmuir 12(3), 641–651 (1996). doi:10.1021/la950560p

    Google Scholar 

  40. B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Loncar, Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19(5–6), 621–629 (2010). doi:10.1016/j.diamond.2010.01.011

    Google Scholar 

  41. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8(11), 3572–3576 (2008). doi:10.1021/nl801136h

    Google Scholar 

  42. N. Yang, H. Uetsuka, C.E. Nebel, Biofunctionalization of vertically aligned diamond nanowires. Adv. Funct. Mater. 19(6), 887–893 (2009). doi:10.1002/adfm.200801392

    Google Scholar 

  43. N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206(9), 2048–2056 (2009). doi:10.1002/pssa.200982222

    Google Scholar 

  44. N. Tokuda, H. Umezawa, T. Saito, K. Yamabe, H. Okushi, S. Yamasaki, Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diam. Relat. Mater. 16(4–7), 767–770 (2007). doi:10.1016/j.diamond.2006.12.024

    Google Scholar 

  45. A. Kruger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43(8), 1722–1730 (2005). doi:10.1016/j.carbon.2005.02.020

    Google Scholar 

  46. O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445(4–6), 255–258 (2007). doi:10.1016/j.cplett.2007.07.091

    Google Scholar 

  47. O.A. Williams, M. Daenen, D.J. Haen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesladek, D.M. Gruen, Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam. Relat. Mater. 15(4–8), 654–658 (2006). doi:10.1016/j.diamond.2005.12.009

  48. M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 24(24), 3624–3626 (2009). doi:10.1039/b903284c

    Google Scholar 

  49. P. Subramanian, Y. Coffinier, D. Steinmuller-Nethl, J. Foord, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: a novel electrical interface for the immobilization of histidinylated biomolecules. Electrochim. Acta 110, 4–8 (2013). doi:10.1016/j.electacta.2012.11.010

  50. S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12(3), 438–441 (2010). doi:10.1016/j.elecom.2010.01.014

  51. Y. Coffinier, S. Szunerits, H. Drobecq, M. Oleg, R. Boukherroub, Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanoscale 4(1), 231–238 (2012). doi:10.1039/c1nr11274k

    Google Scholar 

  52. L. Marcon, A. Addad, Y. Coffinier, R. Boukherroub, Cell micropatterning on superhydrophobic diamond nanowires. Acta Biomater. 9(1), 4585–4591 (2013). doi:10.1016/j.actbio.2012.08.026

    Google Scholar 

  53. Y. Coffinier, E. Galopin, S. Szunerits, R. Boukherroub, Preparation of superhydrophobic and oleophobic diamond nanograss arrays. J. Mater. Chem. 20(47), 10671–10675 (2010). doi:10.1039/c0jm01296c

    Google Scholar 

  54. P.S. Shah, T. Hanrath, K.P. Johnston, S.A. Korgel, Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. J. Phys. Chem. B 108(28), 9574–9587 (2004). doi:10.1021/jp049827w

    Google Scholar 

  55. Y. Wu, P. Yang, Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 123(13), 3165–3166 (2001). doi:10.1021/ja0059084

    Google Scholar 

  56. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Germanium nanowire growth below the eutectic temperature. Science 316(5825), 729–732 (2007). doi:10.1126/science.1139105

    Google Scholar 

  57. J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, Alternative catalysts for VSS growth of silicon and germanium nanowires. J. Mater. Chem. 19(7), 849–857 (2009). doi:10.1039/b817391e

    Google Scholar 

  58. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003). doi:10.1002/adma.200390087

    Google Scholar 

  59. H. Ringsdorf, B. Schlarb, J. Verzmer, Molecular architecture and function of polymeric oriented systems-models for the study of organization, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. 27(1), 113–158 (1988). doi:10.1002/anie.198801131

    Google Scholar 

  60. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, M. Nath, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett. 78(13), 1853–1855 (2001). doi:10.1063/1.1359145

    Google Scholar 

  61. Y. Yin, Y. Lu, Y. Sun, Y. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2(4), 427–430 (2002). doi:10.1021/nl025508+

    Google Scholar 

  62. P.W. May, CVD diamond: a new technology for future. Endeavour 19(3), 101–106 (1995). doi:10.1016/0160-9327(95)97494-S

    Google Scholar 

  63. S.S. Lee, O. Takai, H. Itoh, Uniform coating of CVD diamond on metallic wire substrates. J. Mater. Sci. 32(9), 2417–2422 (1997). doi:10.1023/A:1018513425533

    Google Scholar 

  64. G. Chollon, R. Naslain, C. Prentice, R. Shatwell, P. May, High temperature properties of SiC and diamond CVD-monofilaments. J. Eur. Ceram. Soc. 25(11), 1929–1942 (2005). doi:10.1016/j.jeurceramsoc.2004.06.013

    Google Scholar 

  65. V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, A.F. Durrant, Development of tubes of micro-crystalline diamond and diamond-like carbon. Thin Solid Film 398, 250–254 (2001). doi:10.1016/S0040-6090(01)01441-9

    Google Scholar 

  66. M.K. Singh, E. Titus, J.C. Madaleno, G. Cabral, J. Gracio, Novel two-step method for synthesis of high-density nanocrystalline diamond fibers. Chem. Mater. 20(5), 1725–1732 (2008). doi:10.1021/cm0714741

    Google Scholar 

  67. M.K. Singh, E. Titus, M.G. Willinger, J.C. Madaleno, J. Gracio, Microstructure and electron field emission study of diamond nanorod decorated a-SiO2 nanowires by microwave Ar–CH4/H2 plasma chemical vapor deposition with addition of N2. Diam. Relat. Mater. 18(5–8), 865–869 (2009). doi:10.1016/j.diamond.2009.02.021

    Google Scholar 

  68. J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92(2), 023113 (2008). doi:10.1063/1.2835905

    Google Scholar 

  69. D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 8(8), 2121–2128 (2009). doi:10.1021/nn9003154

    Google Scholar 

  70. D. Luo, L. Wu, J. Zhi, 2-D dimensional micro-network for boron-doped diamond film: fabrication and electrochemical sensing application. Chem. Commun. 46(35), 6488–6490 (2010). doi:10.1039/c0cc01511c

    Google Scholar 

  71. K. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 14(16), 1164–1167 (2002). doi:10.1002/1521-4095(20020816)14:16<1164::AIDADMA1164>3.0.CO;2-E

    Google Scholar 

  72. C.G. Granqvist, A. Andersson, O. Hundri, Spectrally selective surfaces of Ni-pigmented anodic Al2O3. Appl. Phys. Lett. 35(3), 268–270 (1979). doi:10.1063/1.91078

    Google Scholar 

  73. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Mannlis, C.B. Prater, Nanowire array composites. Science 263(5148), 800–802 (1994). doi:10.1126/science.263.5148.800

    Google Scholar 

  74. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishima, Synthesis of well-aligned diamond nanocylinders. Adv. Mater. 13(4), 247–249 (2001). doi:10.1002/1521-4095(200102)13:4<247::AIDADMA247>3.0.CO;2-H

    Google Scholar 

  75. F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminium. J. Electrochem. Soc. 100(9), 411–419 (1953). doi:10.1149/1.2781142

    Google Scholar 

  76. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216), 1466–1468 (1995). doi:10.1126/science.268.5216.1466

    Google Scholar 

  77. I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G.V. Tendeloo, V.I. Konov, Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19(22), 4058–4062 (2007). doi:10.1002/adma.200700442

    Google Scholar 

  78. I.I. Vlasov, V.G. Ralchenko, E. Goovaerts, A.V. Saveliev, M.V. Kanzyuba, Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Phys. Status Solidi A 203(12), 3028–3035 (2006). doi:10.1002/pssa.200671119

  79. D.M. Gruen, Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211–259 (1999). doi:10.1146/annurev.matsci.29.1.211

    Google Scholar 

  80. J.A. Nuth, Small-particle physics and interstellar diamonds. Nature 329(6140), 589 (1987). doi:10.1038/329589b0

    Google Scholar 

  81. P. Badziag, W.S. Verwoerd, W.P. Ellis, N.R. Greiner, Nano-sized diamond are more stable than graphite. Nature 343(6255), 244–245 (1990). doi:10.1038/343244a0

    Google Scholar 

  82. A.S. Barnard, I.K. Snook, Phase stability of nanocarbon in one dimension: nanotubes versus diamond nanowires. J. Chem. Phys. 120(8), 3817–3821 (2004). doi:10.1063/1.1643354

    Google Scholar 

  83. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modeling of diamond nanowire structures. Nano Lett. 3(10), 1323–1328 (2003). doi:10.1021/nl034169x

    Google Scholar 

  84. N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3(4), 1032–1038 (2009). doi:10.1021/nn900167p

    Google Scholar 

  85. A.R. Sobia, S. Adnan, A. Mukhtiar, A.A. Khurram, A.A. Turab, A. Awais, A. Naveed, Q.J. Faisal, H. Javaid, G.J. Yu, Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films. Curr. Appl. Phys. 12(3), 712–717 (2012). doi:10.1016/j.cap.2011.10.008

    Google Scholar 

  86. J. Shalini, Y.C. Lin, T.H. Chang, K.J. Sankaran, H.C. Chen, C.Y. Lee, N.H. Tai, Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties. Electrochim. Acta 92, 9–19 (2013). doi:10.1016/j.electacta.2012.12.078

    Google Scholar 

  87. J. Shalini, K.J. Sankaran, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 5(3), 1159–1167 (2013). doi:10.1039/c2nr32939e

    Google Scholar 

  88. L.Y. Zeng, H.Y. Peng, W.B. Wang, Y.Q. Chen, D. Lei, W. Qi, J.Q. Liang, J.L. Zhao, X.G. Kong, H. Zhang, Nanocrystalline diamond films deposited by the hot cathode direct current plasma chemical vapor deposition method with different compositions of CH4/Ar/H-2 gas mixture. J. Phys. Chem. C 112(5), 1401–1406 (2008). doi:10.1021/jp710082n

    Google Scholar 

  89. L.Y. Zeng, H.Y. Peng, W.B. Wang, Y.Q. Chen, D. Lei, W. Qi, J.Q. Liang, J.L. Zhao, X.G. Kong, H. Zhang, Synthesis and characterization of diamond microcrystals and nanorods deposited by hot cathode direct current plasma chemical vapor deposition method. J. Phys. Chem. C 112(15), 6160–6164 (2008). doi:10.1021/jp7109912

    Google Scholar 

  90. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamonds. Nature 176(4471), 51–55 (1955). doi:10.1038/176051a0

    Google Scholar 

  91. B.V. Derjaguin, D.V. Fedoseev, Synthetic diamond whiskers. Prog. Surf. Sci. 45(1–4), 65–65 (1994). doi: 10.1016/0079-6816(94)90033-7

  92. W.R.L. Lambrecht, C.H. Lee, B. Segall, J.C. Angus, Z.D. Li, M. Sunkara, Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 364(6430), 607–610 (1993). doi:10.1038/364607a0

    Google Scholar 

  93. A. Gross, Hydrogen dissociation on metal surfaces—a model system for reactions on surfaces. Appl. Phys. A Mater. Sci. Process. 67(6), 627–635 (1998). doi:10.1007/s003390050834

    Google Scholar 

  94. H.F. Berger, E. Grosslinger, K.D. Rendulic, Coupling of vibrational and translational energy in the adsorption of H2 on FE(100)—state-resolved sticking coefficients. Surf. Sci. 261(1–3), 313–320 (1992). doi:10.1016/0039-6028(92)90242-X

    Google Scholar 

  95. C.H. Hsu, J. Xu, Diamond nanowire—a challenge from extremes. Nanoscale 4(17), 5293–5299 (2012). doi:10.1039/c2nr31260c

    Google Scholar 

  96. J.H. Zhang, B.Q. Wei, J. Liang, Z.D. Gao, D.H. Wu, Synthesis of diamond from buckytubes by laser and quenching treatment. Mater. Lett. 31(1–2), 79–82 (1997). doi:10.1016/S0167-577X(96)00239-X

    Google Scholar 

  97. Y.Q. Hou, D.M. Zhuang, G. Zhang, M.S. Wu, J.J. Liu, Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes. Appl. Surf. Sci. 185(3–4), 303–308 (2002). doi:10.1016/S0169-4332(01)00988-6

    Google Scholar 

  98. Y.Q. Zhu, T. Sekine, T. Kobayashi, T. Takazawa, M. Terrones, H. Terrones, Collapsing carbon nanotubes and diamond formation under shock waves. Chem. Phys. Lett. 287(5–6), 689–693 (1998). doi:10.1016/S0009-2614(98)00226-7

    Google Scholar 

  99. B.Q. Wei, J. Liang, Z.D. Gao, J.H. Zhang, Y.Q. Zhu, Y.B. Li, D.H. Wu, The transformation of fullerenes into diamond under different processing conditions. J. Mater. Process. Technol. 63(1–3), 573–578 (1997). doi:10.1016/S0924-0136(96)02686-6

    Google Scholar 

  100. L.M. Cao, C.X. Gao, H.P. Sun, G.T. Zou, Z. Zhang, X.Y. Zhang, M. He, M. Zhang, Y.C. Li, J. Zhang, D.Y. Dai, L.L. Sun, W.K. Wang, Synthesis of diamond from carbon nanotubes under high pressure and high temperature. Carbon 39(2), 311–314 (2001). doi:10.1016/S0008-6223(00)00243-8

    Google Scholar 

  101. H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam. Relat. Mater. 11(1), 87–91 (2002). doi:10.1016/S0925-9635(01)00532-5

    Google Scholar 

  102. B. Wei, J. Zhang, J. Liang, D. Wu, The mechanism of phase transformation from carbon nanotube to diamond. Carbon 36(7–8), 997–1001 (1998). doi:10.1016/S0008-6223(97)00232-7

    Google Scholar 

  103. L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, S.X. He, Nanocrystalline diamond from carbon nanotubes. Appl. Phys. Lett. 84(15), 2901–2903 (2004). doi:10.1063/1.1704856

    Google Scholar 

  104. J. Singh, Nucleation and growth-mechanism of diamond during hot-filament chemical-vapor-deposition. J. Mater. Sci. 29(10), 2761–2766 (1994). doi:10.1007/BF00356830

    Google Scholar 

  105. N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, C. Liebske, Nanocrystalline diamond synthesized from C60. Diam. Relat. Mater. 14(1), 16–22 (2005). doi:10.1016/j.diamond.2004.06.017

    Google Scholar 

  106. J. Voskuhl, M. Waller, S. Bandaru, B.A. Tkachenko, C. Fregonese, B. Wibbeling, P.R. Schreiner, B.J. Ravoo, Nanodiamonds in sugar rings: an experimental and theoretical investigation of cyclodextrin-nanodiamond inclusion complexes. Org. Biomol. Chem. 10(23), 4524–4530 (2012). doi:10.1039/c2ob06915f

    Google Scholar 

  107. J. Zhang, Y. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, H. Shinohara, D. Tomanek, Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes. ACS Nano 6(10), 8674–8683 (2012). doi:10.1021/nn303461q

    Google Scholar 

  108. D.A. Britz, A.N. Khlobystov, K. Porfyrakis, A. Ardavan, G.A.D. Briggs, Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. 1, 37–39 (2005). doi:10.1039/b414247k

    Google Scholar 

  109. J. Zhang, Y. Miyata, R. Kitaura, H. Shinohara, Preferential synthesis and isolation of (6,5) single-wall nanotubes from one-dimensional C-60 coalescence. Nanoscale 3(10), 4190–4194 (2011). doi:10.1039/c1nr10602c

    Google Scholar 

  110. J. Zhang, Z. Zhu, Y.Q. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, N.A. Fokina, P.R. Schreiner, Evidence of diamond nanowires formed inside carbon nanotubes from diamantine dicarboxylic acid. Angew. Chem. Int. Ed. 52(13), 3717–3721 (2013). doi:10.1002/anie.201209192

    Google Scholar 

  111. G.C. McIntosh, M. Yoon, S. Berber, D. Tomanek, Diamond fragments as building blocks of functional nanostructures. Phys. Rev. B 70(4), 045401 (2004). doi:10.1103/PhysRevB.70.045401

    Google Scholar 

  112. W. Piekarczyk, How and why CVD diamond is formed: a solution of the thermodynamic paradox. J. Mater. Sci. 33(13), 3443–3453 (1998). doi:10.1023/A:1013214220026

    Google Scholar 

  113. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002). doi:10.1080/10408430208500497

    Google Scholar 

  114. J.T. Tanskanen, M. Linnolahti, A.J. Karttunen, T.A. Pakkanen, From fulleranes and icosahedral diamondoids to polyicosahedral nanowires: structural, electronic, and mechanical characteristics. J. Phys. Chem. C 112(30), 11122–11129 (2008). doi:10.1021/jp7119262

    Google Scholar 

  115. F.L. Liu, Theoretical study on the coplanar double-cage dodecahedrane C35H30. Phys. Chem. Chem. Phys. 6(5), 906–909 (2004). doi:10.1039/b312175e

    Google Scholar 

  116. F.L. Liu, L. Peng, J.X. Zhao, S.Q. Wang, Theoretical study of two C50H40 isomers with three dodecahedrane cages sharing two pentagons. Int. J. Quantum Chem. 103(2), 167–175 (2005). doi:10.1002/qua.20499

    Google Scholar 

  117. A.S. Barnard, S.P. Russo, I.K. Snook, From nanodiamond to diamond nanowires: structural properties affected by dimension. Philos. Mag. 84(9), 899–907 (2004). doi:10.1080/14786430310001627412

    Google Scholar 

  118. O.A. Shenderova, D.W. Brenner, R.S. Ruoff, Would diamond nanorods be stronger than fullerene nanotubes? Nano Lett. 3(6), 805–809 (2003). doi:10.1021/nl025949t

    Google Scholar 

  119. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9), 1624–1652 (2006). doi:10.1016/j.carbon.2006.02.038

    Google Scholar 

  120. J. Guo, B. Wen, R. Melnik, S. Yao, T. Li, Molecular dynamics study on diamond nanowires mechanical properties: strain rate, temperature and size dependent effects. Diam. Relat. Mater. 20(4), 551–555 (2011). doi:10.1016/j.diamond.2011.02.016

    Google Scholar 

  121. F. Occelli, P. Loubeyre, R. Letoullec, Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. 2, 151–154 (2003). doi:10.1038/nmat831

    Google Scholar 

  122. T. Yamanaka, S. Morimoto, H. Kanda, Influence of the isotope ratio on the lattice-constant of diamond. Phys. Rev. B 49(14), 9341–9343 (1994). doi:10.1103/PhysRevB.49.9341

    Google Scholar 

  123. H. Cynn, J.E. Klepeis, C.S. Yoo, D.A. Young, Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88(13), 135701 (2002). doi:10.1103/PhysRevLett.88.135701

    Google Scholar 

  124. H. Peelaers, B. Partoens, F.M. Peeters, Phonon band structure of Si nanowires: a stability analysis. Nano Lett. 9(1), 107–111 (2009). doi:10.1021/nl802613p

    Google Scholar 

  125. H. Peelaers, B. Partoens, F.M. Peeters, Phonons in Ge nanowires. Appl. Phys. Lett. 95(12), 122110 (2009). doi:10.1063/1.3236526

    Google Scholar 

  126. A. Trejo, A. Miranda, L. Rivera, A. Diaz-mendez, M. Cruz-Irisson, Phonon optical modes and electronic properties in diamond nanowires. Micoelectron. Eng. 90, 92–95 (2012). doi:10.1016/j.mee.2011.04.052

    Google Scholar 

  127. K.W. Sun, J.Y. Wang, T.Y. Ko, Raman spectroscopy of single nanodiamond: phonon-confinement effects. Appl. Phys. Lett. 92(15), 153115 (2008). doi:10.1063/1.2912029

    Google Scholar 

  128. C.W. Padgett, D.W. Brenner, Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 4(6), 1051–1053 (2004). DOI:10.1021/nl049645d

    Google Scholar 

  129. N.V. Novikov, A.P. Podoba, S.V. Shmegera, A. Witek, A.M. Zaitsev, A.B. Denisenko, W.R. Fahmer, M. Werner, Influence of isotopic content on diamond thermal conductivity. Diam. Relat. Mater. 8(8–9), 1602–1606 (1999). doi:10.1016/S0925-9635(99)00040-0

    Google Scholar 

  130. J.F. Moreland, J.B. Freund, G. Chen, The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microscale Thermophys. Eng. 8(1), 61–69 (2004). doi:10.1080/10893950490272939

    Google Scholar 

  131. C.W. Padgett, O. Shenderova, D.W. Brenner, Thermal conductivity of diamond nanorods: molecular simulation and scaling relations. Nano Lett. 6(8), 1827–1831 (2006). doi:10.1021/nl060588t

    Google Scholar 

  132. J. Guo, B. Wen, R. Melnik, S. Yao, T. Li, Geometry and temperature dependent thermal conductivity of diamond nanowires: a non-equilibrium molecular dynamics study. Physica E 43(1), 155–160 (2010). doi:10.1016/j.physe.2010.06.032

    Google Scholar 

  133. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008). doi:10.1021/cr068076m

    Google Scholar 

  134. A. Socoliuc, Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313(5784), 207–210 (2006). doi:10.1126/science.1125874

    Google Scholar 

  135. W. Wu, L. Bai, X. Liu, Z. Tang, Z. Gu, Nanograss array boron-doped diamond electrode for enhanced electron transfer from Shewanella loihica PV-4. Electrochem. Commun. 13(8), 872–874 (2011). doi:10.1016/j.elecom.2011.05.025

    Google Scholar 

  136. M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010). doi:10.1002/elan.200900296

    Google Scholar 

  137. Y. Yang, J. Oh, Y. Kim, C. Terashima, A. Fujishima, J. Kim, H. Kim, Enhanced electrogenerated chemiluminescence of a rutheniumtris(2,2’)bipyridyl/tripropylamine system on a boron-doped diamond nanograss array. Chem. Commun. 46(31), 5793–5795 (2010). doi:10.1039/c0cc00773k

    Google Scholar 

  138. N. Yang, R. Hoffmann, W. Smirnov, A. Kriele, C.E. Nebel, Direct electrochemistry of cytochrome c on nanotextured diamond surface. Electrochem. Commun. 12(9), 1218–1221 (2010). doi:10.1016/j.elecom.2010.06.023

    Google Scholar 

  139. F.J. Himpsel, J.A. Knapp, J.A. Vanvechten, D.E. Eastman, Quantum photoyield of diamond(111)—stable negative-affinity emitter. Phys. Rev. B 20(2), 624–627 (1979). doi:10.1103/PhysRevB.20.624

    Google Scholar 

  140. B.J. Cui, J. Ristein, L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81(2), 429–432 (1998). doi:10.1103/PhysRevLett.81.429

    Google Scholar 

  141. T. Ito, M. Nishimura, M. Yokoyama, M. Irie, C.L. Wang, Highly efficient electron emitting diode fabricated with single-crystalline diamond. Diam. Relat. Mater. 9(9–10), 1561–1568 (2000). doi:10.1016/S0925-9635(00)00293-4

    Google Scholar 

  142. I.L. Krainsky, V.M. Asnin, G.T. Mearini, J.A. Dayton, Negative-electron-affinity effect on the surface of chemical-vapor-deposited diamond polycrystalline films. Phys. Rev. B 53(12), R7650–R7653 (1996)

    Google Scholar 

  143. Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin, Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82(26), 5377–5380 (1999). doi:10.1103/PhysRevLett.82.5377

    Google Scholar 

  144. N. Jiang, K. Eguchi, S. Noguchi, T. Inaoka, Y. Shintani, Structural characteristics and field electron emission properties of nano-diamond/carbon films. J. Cryst. Growth 236(4), 577–582 (2002). doi:10.1016/S0022-0248(01)02219-9

    Google Scholar 

  145. S. Gupta, B.L. Weiss, B.R. Weiner, G. Morell, Electron field emission from sulfur-incorporated nanocrystalline carbon thin films. Appl. Phys. Lett. 79(21), 3446–3448 (2001). doi:10.1063/1.1411988

    Google Scholar 

  146. L. Gan, E. Baskin, C. Saguy, R. Kalish, Quantization of 2D hole gas in conductive hydrogenated diamond surfaces observed by electron field emission. Phys. Rev. Lett. 96(19), 196808 (2006). doi:10.1103/PhysRevLett.96.196808

    Google Scholar 

  147. K.J. Sankaran, Y.F. Lin, W.B. Jian, H.C. Chen, K. Panda, B. Sundaravel, C.L. Dong, N.H. Tai, I.N. Lin, Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5(4), 1294–1301 (2013). doi:10.1021/am302430p

    Google Scholar 

  148. W. Zhu, G.P. Kochanski, S. Jin, Low-field electron emission from undoped nanostructured diamond. Science 282(5393), 1471–1473 (1998). doi:10.1126/science.282.5393.1471

    Google Scholar 

  149. D. Pradhan, I.N. Lin, Grain-size-dependent diamond-nondiamond composite films: characterization and field-emission properties. ACS Appl. Mater. Interfaces 1(7), 1444–1450 (2009). doi:10.1021/am9001327

    Google Scholar 

  150. J.P. Thomas, H.C. Chen, N.H. Tai, I.N. Lin, Freestanding ultrananocrystalline diamond films with homojunction insulating layer on conducting layer and their high electron field emission properties. ACS Appl. Mater. Interfaces 3(10), 4007–4013 (2011). doi:10.1021/am200867c

    Google Scholar 

  151. Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seeling, R.P.H. Chang, A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72(22), 2912–2913 (1998). doi:10.1063/1.121493

    Google Scholar 

  152. M. Shiraishi, M. Ata, Work function of carbon nanotubes. Carbon 39(12), 1913–1917 (2001). doi:10.1016/S0008-6223(00)00322-5

    Google Scholar 

  153. Z. Xu, X.D. Bai, E.G. Wang, Z.l Wang, Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 87(16), 163106 (2005). doi:10.1063/1.2103420

  154. R.C. Smith, S.R.P. Silva, Interpretation of the field enhancement factor for electron emission from carbon nanotubes. J. Appl. Phys. 106(1), 014314 (2009). doi:10.1063/1.3149803

    Google Scholar 

  155. A. Mayer, N.M. Miskovsky, P.H. Cutler, Photon-stimulated field emission from semiconducting (10,0) and metallic (5,5) carbon nanotubes. Phys. Rev. B 65(19), 195416 (2002). doi:10.1103/PhysRevB.65.195416

    Google Scholar 

  156. M. Najam-ul-Haq, M. Rainer, C.W. Huck, P. Hausberger, H. Kraushaar, G.K. Bonn, Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal. Chem. 80(19), 7467–7472 (2008). doi:10.1021/ac801190e

    Google Scholar 

  157. J.M. Kim, J.H. Park, C.W. Baek, Y.K. Kim, The SiOG-based single-crystalline silicon (SCS) RF MEMS switch with uniform characteristics. J. Microelectromech. Syst. 13(6), 1036–1042 (2004). doi:10.1109/JMEMS.2004.838365

    Google Scholar 

  158. M. Adamschik, J. Kuserer, P. Schmid, K.B. Schad, D. Grobe, E. Kohn, Diamond microwave micro relay. Diam. Relat. Mater. 11(3–6), 672–676 (2002). doi:10.1016/S0925-9635(01)00619-7

    Google Scholar 

  159. V.P. Adiga, A.V. Sumant, S. Suresh, C. Gudeman, O. Auiello, J.A. Carlisle, R.W. Carpick, Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys. Rev. B 79(24), 245403 (2009). doi:10.1103/PhysRevB.79.245403

    Google Scholar 

  160. S. Koizumi, K. Watanabe, M. Hasegawa, H. Kanda, Ultraviolet emission from a diamond pn junction. Science 292(5523), 1899–1901 (2001). doi:10.1126/science.1060258

    Google Scholar 

  161. H. EI-Hajj, A. Denisenko, A. Kaiser, R.S. Balmer, E. Kohn, Diamond MISFET based on boron delta-doped channel. Diam. Relat. Mater. 17(7–10), 1259–1263 (2008). doi:10.1016/j.diamond.2008.02.015

  162. S. Szunerits, R. Boukherroub, Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12(10), 1205–1218 (2008). doi:10.1007/s10008-007-0473-3

    Google Scholar 

  163. G. Carpini, F. Lucarelli, G. Marrazza, M. Mascini, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 20(2), 167–175 (2004). doi:10.1016/j.bios.2004.02.021

    Google Scholar 

  164. O. Paenke, A. Kirbs, F. Lisdat, Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using. Biosens. Bioelectron. 22(11), 2656–2662 (2007). doi:10.1016/j.bios.2006.10.033

    Google Scholar 

  165. H. Aoki, H. Tao, Gene sensors based on peptide nucleic acid (PNA) probes: relationship between sensor sensitivity and probe/target duplex stability. Analyst 130(11), 1478–1482 (2005). doi:10.1039/b507121f

    Google Scholar 

  166. G. Zhao, Y. Qi, Y. Tian, Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis 18(8), 830–834 (2006). doi:10.1002/elan.200503455

    Google Scholar 

  167. W. Huang, G. Mai, Y. Liu, C. Yang, W. Qua, Voltammetric determination of tryptophan at a single-wall carbon nanotubes modified electrode. J. Nanosci. Nanotechnol. 4(4), 423–427 (2004). doi:10.1166/jnn.2004.122

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the supports of the International Science and Technology Cooperation Program of China (no. 2013DFG50150), the Natural Foundation of Sciences of the People’s Republic of China (Grant no. 21175144, and 20903111) and the Key Project of Beijing Natural Science Foundation (Grant No. 2120002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfang Zhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, Y., Wu, L., Zhi, J. (2015). Diamond Nanowires: Fabrication, Structure, Properties and Applications. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-09834-0_5

Download citation

Publish with us

Policies and ethics