Skip to main content

On the Structure of \(\mathbb{N}\)-Graded Vertex Operator Algebras

  • Chapter
  • First Online:
  • 998 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 38))

Abstract

We consider the algebraic structure of \(\mathbb{N}\)-graded vertex operator algebras with conformal grading \(V = \oplus _{n\geq 0}V _{n}\) and \(\mathrm{dim}V _{0} \geq 1\). We prove several results along the lines that the vertex operators Y (a, z) for a in a Levi factor of the Leibniz algebra V 1 generate an affine Kac–Moody subVOA. If V arises as a shift of a self-dual VOA of CFT-type, we show that V 0 has a “de Rham structure” with many of the properties of the de Rham cohomology of a complex connected manifold equipped with Poincaré duality.

Supported by the NSF

Partially supported by a grant from the Simons Foundation (# 207862)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Barnes, On Levi’s Theorem for Leibniz algebras, Bull. Aust. Math. Soc. 86(2) (2012), 184–185.

    Google Scholar 

  2. P. Bressler, Vertex algebroids I, arXiv: math. AG/0202185.

    Google Scholar 

  3. C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics Vol. 112, Birkhäuser, Boston, 1993.

    Google Scholar 

  4. C. Dong, H. Li and G. Mason, Regularity of vertex operator algebras, Adv. Math. 132 (1997) No. 1, 148–166.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Dong, H. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) No. 3, 571–600.

    Google Scholar 

  6. C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, Int, Math. Res. Not. 56 (2004), 2989–3008.

    Google Scholar 

  7. C. Dong and G. Mason, Local and semilocal vertex operator algebras, J. Algebra 280 (2004), 350–366.

    Google Scholar 

  8. C. Dong and G. Mason, Shifted vertex operator algebras, Math. Proc. Cambridge Phil. Soc. 141 (2006), 67–80.

    Google Scholar 

  9. C. Dong and G. Mason, Integrability of C 2-cofinite Vertex Operator Algebra, IMRN, Article ID 80468 (2006), 1–15.

    Google Scholar 

  10. I. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. A.M.S. Vol. 104 No. 4, 1993.

    Google Scholar 

  11. M. Gaberdiel and A. Neitzke, Rationality, quasirationality and finite W-algebras, Comm. Math. Phys. 238 (2008), 305–331.

    Google Scholar 

  12. V. Gorbounov, F. Malikov and V. Schechtman, Gerbes of chiral differential operators II, Vertex algebroids, Invent. Math. 155 (2004), 605–680.

    Google Scholar 

  13. H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure and Appl. Math. 96 (1994), no.1, 279–297.

    Google Scholar 

  14. J. Lepowsky and H.-S. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math. Vol. 227, Birkhäuser, Boston, 2003.

    Google Scholar 

  15. H. Li and G. Yamskulna, On certain vertex algebras and their modules associated with vertex algebroids, J. Alg 283 (2005), 367–398.

    Google Scholar 

  16. G. Mason, Lattice subalgebras of vertex operator algebras, to appear in Proceedings of the Heidelberg Conference, Springer, arXiv: 1110.0544.

    Google Scholar 

  17. F. Malikov and V. Schechtman, Chiral Poincaré duality, Math. Res. Lett. 6 (1999), 533–546, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc.Transl. Ser. 2 194 (1999), 149–188.

    Google Scholar 

  18. F. Malikov and V. Schechtman, Chiral de Rham complex II, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc.Transl. Ser. 2 194 (1999), 149–188.

    Google Scholar 

  19. F. Malikov, V. Schechtman and A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999), 439–473.

    Google Scholar 

  20. G. Mason and G. Yamskulna, Leibniz algebras and Lie algebras, SIGMA 9 (2013), no 63, 10 pages.

    Google Scholar 

  21. Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) No. 1, 237–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mason, G., Yamskulna, G. (2014). On the Structure of \(\mathbb{N}\)-Graded Vertex Operator Algebras. In: Mason, G., Penkov, I., Wolf, J. (eds) Developments and Retrospectives in Lie Theory. Developments in Mathematics, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-09804-3_12

Download citation

Publish with us

Policies and ethics