Advertisement

Dirac Cohomology and Generalization of Classical Branching Rules

  • Jing-Song HuangEmail author
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 38)

Abstract

We generalize certain classical results on branching rules such as the Littlewood restriction formulae. Our formulae are expressed in terms of a linear integral combination of the Littlewood–Richardson coefficients and in terms of Dirac cohomology.

Key words

Branching rule Dirac cohomology Littlewood–Richardson coefficient Harish-Chandra module Holomorphic representation 

Mathematics Subject Classification (2010):

22E46 22E 47 

References

  1. [BGG]
    J. Bernstein, I. Gelfand, S. Gelfand, Category of \(\mathfrak{g}\) -modules, Funct. Anal. and Appl. 10 (1976), 87–92.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [DH]
    C.-P. Dong, J.-S. Huang, Jacquet modules and Dirac cohomology, Adv. Math. 226 (2011), 2911–2934.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [E]
    T. Enright, Analogues of Kostant’s \(\mathfrak{u}\) -cohomology formulas for unitary highest weight modules, J. Reine Angew. Math. 392 (1988), 27–36.MathSciNetzbMATHGoogle Scholar
  4. [EHW]
    T. Enright, R. Howe, N. Wallach, A classification of unitary highest weight modules, in Representation theory of reductive groups, Park City, Utah, 1982, Birkhäuser, Boston, 1983, 97–143.Google Scholar
  5. [EW]
    T. Enright, J. Willenbring, Hilbert series, Howe duality and branching rules for classical groups, Ann. Math. 159 (2004), no.1, 337–375.Google Scholar
  6. [GW]
    R. Goodman, N. Wallach, Representations and Invariants of the Classical Groups, Encyc. Math. and its Appl. 68, Cambridge Univ. Press, Cambridge, 1998.Google Scholar
  7. [HS]
    H. Hecht, W. Schmid, A proof of Blattner’s conjecture, Invent. Math. 31 (1975), no. 2, 129–154.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [H1]
    R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no.2, 539–570.Google Scholar
  9. [H2]
    R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992), Israel Math. Conf. Proc., Bar-Ilan Univ., Ramat Gan, 1995, 1–182.Google Scholar
  10. [HK]
    R. Howe, H. Kraft, Principal covariants, multiplicity free actions and the \(K\) -types of holomorphic discrete series, in Geometry and representation theory of real and p-adic Lie groups (Córdoba 1995), J. Tirao, D. Vogan, J.A. Wolf (eds), Progr. Math. 158, Birkhäuser, Boston, 1997, 209–242.Google Scholar
  11. [HL]
    R. Howe, S. Lee, Why should the Littlewood–Richardson rule be true, Bulletin of Amer. Math. Soc. 49 (2012), 187–236.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [HTW]
    R. Howe, E.-C. Tan, P. Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2004), no.4, 1601–1626.Google Scholar
  13. [HKP]
    J.-S. Huang, Y.-F. Kang, P. Pandžić, Dirac cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), no. 1, 163–173.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [HP1]
    J.-S Huang, P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185–202.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [HP2]
    J.-S Huang, P. Pandžić, Dirac operator in Representation Theory, Math. Theory Appl., Birkhäuser, 2006.Google Scholar
  16. [HPR]
    J.-S Huang, P. Pandžić, D. Renard, Dirac operators and Lie algebra cohomology, Represent. Theory 10 (2006), 299–313.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [HPP]
    J.-S. Huang, P. Pandžić, V. Protsak, Dirac cohomology of Wallach representations, Pacific J. Math. 250 (2011), no. 1, 163–190.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [HPZ]
    J.-S. Huang, P. Pandžić, F.-H. Zhu, Dirac cohomology, K-Characters and branching laws, American Jour. Math. 135 (2013), 1253–1269.CrossRefzbMATHGoogle Scholar
  19. [HX]
    J.-S. Huang, W. Xiao, Dirac cohomology of highest weight modules, Selecta Math. New Series 18 (2012), 803–824.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Hum]
    J. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \(\mathcal{O}\). GSM. 94, Amer. Math. Soc., 2008.Google Scholar
  21. [Kn]
    A. Knapp, Lie Groups Beyond An Introduction, Progress in Math. Vol. 140, Birkhäuser, 2002.Google Scholar
  22. [K1]
    B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), 447–501.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [K2]
    B. Kostant, Dirac cohomology for the cubic Dirac operator, Studies in Memory of Issai Schur, Progress in Math. Vol. 210 (2003), 69–93.MathSciNetGoogle Scholar
  24. [Ku]
    S. Kudla, Seesaw dual reductive pairs, Automorphic forms of several variables (Katata, 1983), Progr. Math. 46, Birkhäuser, Boston, 1984, pp. 244–268.Google Scholar
  25. [L1]
    D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford Univ. Press, New York, 1940.Google Scholar
  26. [L2]
    D. E. Littlewood, On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London, Ser. A, 239 (1944), 387–417.Google Scholar
  27. [P]
    R. Parthasarathy, Dirac operator and the discrete series, Ann. Math. 96 (1972), 1–30.CrossRefzbMATHGoogle Scholar
  28. [S]
    W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Rumen, Invent. Math. 9 (1969/1970), 61–80.Google Scholar
  29. [V]
    D. Vogan Jr., Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall 1997.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsHong Kong University of Science and TechnologyKowloonHong Kong SAR, China

Personalised recommendations