Advertisement

Group Gradings on Lie Algebras, with Applications to Geometry. I

  • Yuri BahturinEmail author
  • Michel Goze
  • Elisabeth Remm
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 38)

Abstract

In this article, which is the first part of a sequence of two, we discuss modern approaches to the classification of group gradings on simple and nilpotent Lie algebras. In the second article we discuss applications and related topics in differential geometry.

Key words

Lie and associative algebras of linear transformations Graded algebras Hopf algebras Automorphisms Involution gradings 

Mathematics Subject Classification (2010):

16K20 16T05 16W10 16W20 16W50 17B65 17B70 17B40. 

References

  1. 1.
    Bahturin, Yuri; Identical Relations in Lie Algebras. VNU Science Press, Utrecht, 1987, x+309pp.Google Scholar
  2. 2.
    Bahturin, Yuri; Brešar, Matej, Lie gradings on associative algebras, J. Algebra, 321 (2009), 264–283.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bahturin, Yuri; Brešar, Matej; Kochetov, Mikhail, Group gradings on finitary simple Lie algebras, Int.J. Algebra Comp, 22 (2012), 125–146.Google Scholar
  4. 4.
    Bahturin, Y.; Kochetov, M. Classification of group gradings on simple Lie algebras of types A, B, C and D. J. Algebra 324 (2010), 2971–2989.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bahturin, Yuri; Kochetov, Mikhail. Group gradings on the Lie algebra \(\mathfrak{p}\mathfrak{s}\mathfrak{l}_{n}\) in positive characteristic. J. Pure Appl. Algebra 213 (2009), no. 9, 1739–1749.Google Scholar
  6. 6.
    Bahturin, Yuri; Kochetov, Mikhail. Classification of group gradings on simple Lie algebras of types A,B,C and D. J. Algebra 324 (2010), no. 11, 2971–2989.Google Scholar
  7. 7.
    Bahturin, Yuri; Kochetov, Mikhail, Group gradings on restricted Cartan-type Lie algebras, Pacific J. Math. 253 (2011), no. 2, 289–319.Google Scholar
  8. 8.
    Bahturin, Y.; Kochetov, M.; Montgomery, S. Group gradings on simple Lie algebras in positive characteristic. Proc. Amer. Math. Soc., 137 (2009), no. 4, 1245–1254.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bahturin, Y.; Shestakov, I.; Zaicev, M. Gradings on simple Jordan and Lie algebras. J. Algebra, 283 (2005), no. 2, 849–868.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bahturin, Y. A.; Sehgal, S. K.; Zaicev, M. V. Group gradings on associative algebras, J. Algebra 241 (2001), no. 2, 677–698.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bahturin, Yuri; Zaicev, Mikhail, Group gradings on simple Lie algebras of type “A”, J. Lie Theory 16(2006), 719–742.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bahturin, Y.; Zaicev, M. Gradings on simple algebras of finitary matrices, J. Algebra 324 (2010), no. 6, 1279–1289.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Baranov, A. A. Finitary simple Lie algebras. J. Algebra, 219 (1999), no. 1, 299–329.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Baranov, A. A.; Strade, H. Finitary Lie algebras. J. Algebra, 254 (2002), no. 1, 173–211.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Beidar, K. I.; Brešar, M.; Chebotar, M. A.; Martindale, 3rd,W. S. On Herstein’s Lie map conjectures. I, Trans. Amer. Math. Soc. 353 (2001), no. 10, 4235–4260 (electronic).Google Scholar
  16. 16.
    to3em___ , On Herstein’s Lie map conjectures. II, J. Algebra 238 (2001), no. 1, 239–264.Google Scholar
  17. 17.
    to3em_ , On Herstein’s Lie map conjectures. III, J. Algebra 249 (2002), no. 1, 59–94.Google Scholar
  18. 18.
    Brešar, M.; Chebotar, M. A.; Martindale, 3rd, W. S. Functional identities, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.Google Scholar
  19. 19.
    Elduque, Alberto; Kochetov, Mikhail. Gradings on Simple Lie Algebras AMS Mathematical Surveys and Monographs, 189 (2013), 336 pp.Google Scholar
  20. 20.
    Goze, Michel; Khakimdjanov, Yusupdjan. Some nilpotent Lie algebras and its applications. Algebra and operator theory (Tashkent, 1997), 4964, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
  21. 21.
    Goze, Michel; Hakimjanov, Yusupdjan. Sur les algèbres de Lie nilpotentes admettant un tore de dérivations. Manuscripta Math. 84 (1994), no. 2, 115–124.Google Scholar
  22. 22.
    Havliček, Miloslav; Patera, Jiři; Pelantova, Edita, On Lie gradings. II, Linear Algebra Appl. 277 (1998), no. 1–3, 97–125.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jacobson, N. Structure of Rings. Colloquium Publications, 37, American Math. Society, Providence, RI, 1964.Google Scholar
  24. 24.
    Montgomery, S., Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, 82. American Mathematical Society, Providence, RI, 1993.Google Scholar
  25. 25.
    Năstăsescu, C.; Van Oystaeyen, F.; Methods of graded rings, Lecture Notes in Mathematics, Vol. 1836, Springer-Verlag, Berlin, 2004.Google Scholar
  26. 26.
    Patera, Jiri; Zassenhaus, Hans, On Lie gradings. I, Linear Algebra. Appl., 112 (1989), 87–159Google Scholar
  27. 27.
    Platonov, Vladimir P. Subgroups of algebraic groups over a local or global field containing a maximal torus. C. R. Acad. Sci. Paris Sr. I Math. 318 (1994), no. 10, 899–903.Google Scholar
  28. 28.
    Springer, T.A. and Steinberg, R. Conjugacy classes. Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture Notes in Mathematics, 131, Springer, Berlin, 1970, pp. 167–266.Google Scholar
  29. 29.
    Strade, H.; Simple Lie algebras over fields of positive characteristic. I, de Gruyter Expositions in Mathematics, Vol. 38, Walter de Gruyter & Co., Berlin, 2004, Structure theory.Google Scholar
  30. 30.
    to3em__________ , Simple Lie algebras over fields of positive characteristic. II, de Gruyter Expositions in Mathematics, Vol. 42, Walter de Gruyter & Co., Berlin, 2009, Classifying the absolute toral rank two case.Google Scholar
  31. 31.
    Vergne, Michèle. Cohomologie des algèbres de Lie nilpotentes. Application l’étude de la variété des algèbres de Lie nilpotentes. C. R. Acad. Sci. Paris, Sr. A-B 267 1968, A867A870.Google Scholar
  32. 32.
    Waterhouse, W.C., Introduction to affine group schemes, GTM, Vol 66, Springer Verlag, New York, 1979.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. JohnsCanada
  2. 2.Université de Haute AlsaceLMIAMulhouseFrance

Personalised recommendations