Skip to main content

ABC Transporter Modulatory Drugs from Marine Sources: A New Approach to Overcome Drug Resistance in Cancer

  • Chapter
  • First Online:
Resistance to Targeted ABC Transporters in Cancer

Abstract

Fighting this unconquerable mammoth of a disease that is cancer has been increasingly difficult from its discovery over a century ago. A multitude of agents have been identified in the past to conquer the battle against cancer. Nevertheless, controlling it from its onset has been very difficult, the reason being its ability to evade the toxic insults, and to develop mechanisms to survive in the presence of cancer drugs. Of the several factors responsible, the phenomenon of multidrug resistance (MDR) has contributed essentially for the cancerous cells to survive. This phenomenon is characterized by the ability to impart immunity to several classes of drugs with different structural and mechanistic traits. The association of ATP-binding cassette (ABC) efflux transporters with the development of MDR has been a major impediment toward attaining an efficient chemotherapeutic outcome in cancer patients. Overcoming this pathway of resistance with the use of modulators to block the drug efflux transporters has shown some promise in recent years. However, there is still room for improvement in designing the clinical strategy and developing newer agents to overcome MDR. Nature has provided researchers amazing treatment options in the past for numerous diseases. Hence, it is now time to look into nature and find answers to effectively modulate the function of ABC drug transporters to overcome resistance to anticancer drugs. Here we discuss some lead molecules isolated from marine organisms that have shown promising results in overcoming MDR associated with ABC transporters.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-319-09801-2_12

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-09801-2_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ABCP:

ABC transporter expressed in the placenta

BCRP:

Breast cancer resistance protein

DX:

Doxorubicin

MDR:

Multidrug resistance

MRP1:

Multidrug resistance protein 1

MRP7:

Multidrug resistance protein 7

MXR:

Mitoxantrone resistance protein

P-gp:

P-glycoprotein

VCR:

Vincristine

VLB:

Vinblastine

References

  1. Hamilton GR, Baskett TF. In the arms of Morpheus the development of morphine for postoperative pain relief. Can J Anaesth. 2000;47:367–74.

    CAS  PubMed  Google Scholar 

  2. Bergmann W, Feeney RJ. Contributions to the study of marine products. XXXII. The nucleosides of sponges. I.1. J Org Chem. 1951;16:981–7.

    CAS  Google Scholar 

  3. Bergmann W, Feeney RJ. The isolation of a new thymine pentoside from sponges1. J Am Chem Soc. 1950;72:2809–10.

    CAS  Google Scholar 

  4. Bergmann W, Burke DC. Contributions to the study of marine products. XXXIX. The nucleosides of sponges. III. 1 Spongothymidine and spongouridine2. J Org Chem. 1955;20:1501–7.

    CAS  Google Scholar 

  5. Loganzo F, Discafani CM, Annable T, Beyer C, Musto S, Hari M, Tan X, Hardy C, Hernandez R, Baxter M, Singanallore T, Khafizova G, Poruchynsky MS, Fojo T, Nieman JA, Ayral-Kaloustian S, Zask A, Andersen RJ, Greenberger LM. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. 2003;63:1838–45.

    CAS  PubMed  Google Scholar 

  6. ter Haar E, Kowalski RJ, Hamel E, Lin CM, Longley RE, Gunasekera SP, Rosenkranz HS, Day BW. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry. 1996;35:243–50.

    PubMed  Google Scholar 

  7. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92.

    CAS  PubMed  Google Scholar 

  8. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    CAS  PubMed  Google Scholar 

  9. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.

    CAS  PubMed  Google Scholar 

  10. Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene. 2003;22:7512–23.

    CAS  PubMed  Google Scholar 

  11. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci U S A. 2001;98:4628–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    CAS  PubMed  Google Scholar 

  13. Maier S, Dahlstroem C, Haefliger C, Plum A, Piepenbrock C. Identifying DNA methylation biomarkers of cancer drug response. Am J Pharmacogenomics. 2005;5:223–32.

    CAS  PubMed  Google Scholar 

  14. Taylor ST, Hickman JA, Dive C. Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J Natl Cancer Inst. 2000;92:18–23.

    CAS  PubMed  Google Scholar 

  15. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72:4875–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Sun YL, Patel A, Kumar P, Chen ZS. Role of ABC transporters in cancer chemotherapy. Chin J Cancer. 2012;31:51–7.

    PubMed Central  PubMed  Google Scholar 

  17. Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer. 2012;31:58–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Shi Z, Tiwari AK, Patel AS, Fu LW, Chen ZS. Roles of sildenafil in enhancing drug sensitivity in cancer. Cancer Res. 2011;71:3735–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet. 2005;6:123–42.

    CAS  PubMed  Google Scholar 

  20. Whitington PF, Freese DK, Alonso EM, Schwarzenberg SJ, Sharp HL. Clinical and biochemical findings in progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. 1994;18:134–41.

    CAS  PubMed  Google Scholar 

  21. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis. 2009;4:1.

    PubMed Central  PubMed  Google Scholar 

  22. Bull LN, Carlton VE, Stricker NL, Baharloo S, DeYoung JA, Freimer NB, Magid MS, Kahn E, Markowitz J, DiCarlo FJ, McLoughlin L, Boyle JT, Dahms BB, Faught PR, Fitzgerald JF, Piccoli DA, Witzleben CL, O’Connell NC, Setchell KD, Agostini Jr RM, Kocoshis SA, Reyes J, Knisely AS. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity. Hepatology. 1997;26:155–64.

    CAS  PubMed  Google Scholar 

  23. Deleuze JF, Jacquemin E, Dubuisson C, Cresteil D, Dumont M, Erlinger S, Bernard O, Hadchouel M. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology. 1996;23:904–8.

    CAS  PubMed  Google Scholar 

  24. Kartenbeck J, Leuschner U, Mayer R, Keppler D. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology. 1996;23:1061–6.

    CAS  PubMed  Google Scholar 

  25. Keitel V, Kartenbeck J, Nies AT, Spring H, Brom M, Keppler D. Impaired protein maturation of the conjugate export pump multidrug resistance protein 2 as a consequence of a deletion mutation in Dubin-Johnson syndrome. Hepatology. 2000;32:1317–28.

    CAS  PubMed  Google Scholar 

  26. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology. 1997;25:1539–42.

    CAS  PubMed  Google Scholar 

  27. Yap EY, Gleaton MS, Buettner H. Visual loss associated with pseudoxanthoma elasticum. Retina. 1992;12:315–9.

    CAS  PubMed  Google Scholar 

  28. Neldner KH. Pseudoxanthoma elasticum. Clin Dermatol. 1988;6:1–159.

    CAS  PubMed  Google Scholar 

  29. Lebwohl M, Halperin J, Phelps RG. Brief report: occult pseudoxanthoma elasticum in patients with premature cardiovascular disease. N Engl J Med. 1993;329:1237–9.

    CAS  PubMed  Google Scholar 

  30. Weenink AC, Dijkman G, de Meijer PH. Pseudoxanthoma elasticum and its complications: two case reports. Neth J Med. 1996;49:24–9.

    CAS  PubMed  Google Scholar 

  31. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005;5:30.

    PubMed Central  PubMed  Google Scholar 

  32. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003;10:159–65.

    PubMed  Google Scholar 

  33. Nooter K, Brutel de la Riviere G, Look MP, van Wingerden KE, Henzen-Logmans SC, Scheper RJ, Flens MJ, Klijn JG, Stoter G, Foekens JA. The prognostic significance of expression of the multidrug resistance-associated protein (MRP) in primary breast cancer. Br J Cancer. 1997;76:486–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Zalcberg J, Hu XF, Slater A, Parisot J, El-Osta S, Kantharidis P, Chou ST, Parkin JD. MRP1 not MDR1 gene expression is the predominant mechanism of acquired multidrug resistance in two prostate carcinoma cell lines. Prostate Cancer Prostatic Dis. 2000;3:66–75.

    CAS  PubMed  Google Scholar 

  35. Garrido W, Munoz M, San Martin R, Quezada C. FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1. Biochem Biophys Res Commun. 2011;411:62–8.

    CAS  PubMed  Google Scholar 

  36. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Robey RW, Shukla S, Steadman K, Obrzut T, Finley EM, Ambudkar SV, Bates SE. Inhibition of ABCG2-mediated transport by protein kinase inhibitors with a bisindolylmaleimide or indolocarbazole structure. Mol Cancer Ther. 2007;6:1877–85.

    CAS  PubMed  Google Scholar 

  38. Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat. 2012;15:70–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Shervington A, Lu C. Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest. 2008;26:535–42.

    CAS  PubMed  Google Scholar 

  40. Bhatavdekar JM, Patel DD, Chikhlikar PR, Trivedi TI, Gosalia NM, Ghosh N, Shah NG, Vora HH, Suthar TP. Overexpression of CD44: a useful independent predictor of prognosis in patients with colorectal carcinomas. Ann Surg Oncol. 1998;5:495–501.

    CAS  PubMed  Google Scholar 

  41. Wang P, Zhang Z, Gao K, Deng Y, Zhao J, Liu B, Li X. Expression and clinical significance of ABCC10 in the patients with non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2009;12:875–8.

    CAS  PubMed  Google Scholar 

  42. McDevitt CA, Callaghan R. How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther. 2007;113:429–41.

    CAS  PubMed  Google Scholar 

  43. Ozols RF, Cunnion RE, Klecker Jr RW, Hamilton TC, Ostchega Y, Parrillo JE, Young RC. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol. 1987;5:641–7.

    CAS  PubMed  Google Scholar 

  44. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41:1967–72.

    CAS  PubMed  Google Scholar 

  45. Tsuruo T, Iida H, Nojiri M, Tsukagoshi S, Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983;43:2905–10.

    CAS  PubMed  Google Scholar 

  46. Tiwari AK, Sodani K, Wang SR, Kuang YH, Ashby Jr CR, Chen X, Chen ZS. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol. 2009;78:153–61.

    CAS  PubMed  Google Scholar 

  47. Dai CL, Tiwari AK, Wu CP, Su XD, Wang SR, Liu DG, Ashby Jr CR, Huang Y, Robey RW, Liang YJ, Chen LM, Shi CJ, Ambudkar SV, Chen ZS, Fu LW. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68:7905–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby Jr CR, Fu LW, Ambudkar SV, Chen ZS. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 2007;67:11012–20.

    CAS  PubMed  Google Scholar 

  49. Kathawala RJ, Sodani K, Chen K, Patel A, Abuznait AH, Anreddy N, Sun YL, Kaddoumi A, Ashby Jr CR, Chen ZS. Masitinib antagonizes ATP-binding cassette subfamily C member 10-mediated paclitaxel resistance: a preclinical study. Mol Cancer Ther. 2014;13:714–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Tiwari AK, Sodani K, Dai CL, Abuznait AH, Singh S, Xiao ZJ, Patel A, Talele TT, Fu L, Kaddoumi A, Gallo JM, Chen ZS. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett. 2013;328:307–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Sodani K, Tiwari AK, Singh S, Patel A, Xiao ZJ, Chen JJ, Sun YL, Talele TT, Chen ZS. GW583340 and GW2974, human EGFR and HER-2 inhibitors, reverse ABCG2- and ABCB1-mediated drug resistance. Biochem Pharmacol. 2012;83:1613–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Sun YL, Chen JJ, Kumar P, Chen K, Sodani K, Patel A, Chen YL, Chen SD, Jiang WQ, Chen ZS. Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS One. 2013;8:e55576.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Kuang YH, Patel JP, Sodani K, Wu CP, Liao LQ, Patel A, Tiwari AK, Dai CL, Chen X, Fu LW, Ambudkar SV, Korlipara VL, Chen ZS. OSI-930 analogues as novel reversal agents for ABCG2-mediated multidrug resistance. Biochem Pharmacol. 2012;84:766–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Yang D, Kathawala RJ, Chufan EE, Patel A, Ambudkar SV, Chen ZS, Chen X. Tivozanib reverses multidrug resistance mediated by ABCB1 (P-glycoprotein) and ABCG2 (BCRP). Future Oncol. 2013. Dec 3. PubMed PMID: 24295377.

    Google Scholar 

  55. Chen JJ, Patel A, Sodani K, Xiao ZJ, Tiwari AK, Zhang DM, Li YJ, Yang DH, Ye WC, Chen SD, Chen ZS. bba, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10). PLoS One. 2013;8:e74573.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Sun YL, Kumar P, Sodani K, Patel A, Pan Y, Baer MR, Chen ZS, Jiang WQ. Ponatinib enhances anticancer drug sensitivity in MRP7-overexpressing cells. Oncol Rep. 2014;31:1605–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Patel A, Tiwari AK, Chufan EE, Sodani K, Anreddy N, Singh S, Ambudkar SV, Stephani R, Chen ZS. PD173074, a selective FGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells. Cancer Chemother Pharmacol. 2013;72:189–99.

    CAS  PubMed  Google Scholar 

  58. Wattel E, Solary E, Hecquet B, Caillot D, Ifrah N, Brion A, Milpied N, Janvier M, Guerci A, Rochant H, Cordonnier C, Dreyfus F, Veil A, Hoang-Ngoc L, Stoppa AM, Gratecos N, Sadoun A, Tilly H, Brice P, Lioure B, Desablens B, Pignon B, Abgrall JP, Leporrier M, Fenaux P, et al. Quinine improves results of intensive chemotherapy (IC) in myelodysplastic syndromes (MDS) expressing P-glycoprotein (PGP). Updated results of a randomized study. Groupe Francais des Myelodysplasies (GFM) and Groupe GOELAMS. Adv Exp Med Biol. 1999;457:35–46.

    CAS  PubMed  Google Scholar 

  59. List AF, Kopecky KJ, Willman CL, Head DR, Persons DL, Slovak ML, Dorr R, Karanes C, Hynes HE, Doroshow JH, Shurafa M, Appelbaum FR. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood. 2001;98:3212–20.

    CAS  PubMed  Google Scholar 

  60. Li GY, Liu JZ, Zhang B, Wang LX, Wang CB, Chen SG. Cyclosporine diminishes multidrug resistance in K562/ADM cells and improves complete remission in patients with acute myeloid leukemia. Biomed Pharmacother. 2009;63:566–70.

    CAS  PubMed  Google Scholar 

  61. Ye CG, Wu WK, Yeung JH, Li HT, Li ZJ, Wong CC, Ren SX, Zhang L, Fung KP, Cho CH. Indomethacin and SC236 enhance the cytotoxicity of doxorubicin in human hepatocellular carcinoma cells via inhibiting P-glycoprotein and MRP1 expression. Cancer Lett. 2011;304:90–6.

    CAS  PubMed  Google Scholar 

  62. Anuchapreeda S, Thanarattanakorn P, Sittipreechacharn S, Tima S, Chanarat P, Limtrakul P. Inhibitory effect of curcumin on MDR1 gene expression in patient leukemic cells. Arch Pharm Res. 2006;29:866–73.

    CAS  PubMed  Google Scholar 

  63. Xu D, Fang L, Zhu Q, Hu Y, He Q, Yang B. Antimultidrug-resistant effect and mechanism of a novel CA-4 analogue MZ3 on leukemia cells. Pharmazie. 2008;63:528–33.

    CAS  PubMed  Google Scholar 

  64. Wu CP, Calcagno AM, Ambudkar SV. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol. 2008;1:93–105.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Shao SL, Zhang WW, Li XY, Zhang ZZ, Yun DZ, Fu B, Zuo MX. Reversal of MDR1 gene-dependent multidrug resistance in HL60/HT9 cells using short hairpin RNA expression vectors. Cancer Biother Radiopharm. 2010;25:171–7.

    CAS  PubMed  Google Scholar 

  66. Lim MN, Lau NS, Chang KM, Leong CF, Zakaria Z. Modulating multidrug resistance gene in leukaemia cells by short interfering RNA. Singapore Med J. 2007;48:932–8.

    CAS  PubMed  Google Scholar 

  67. Chen BA, Mao PP, Cheng J, Gao F, Xia GH, Xu WL, Shen HL, Ding JH, Gao C, Sun Q, Chen WJ, Chen NN, Liu LJ, Li XM, Wang XM. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells. Int J Nanomedicine. 2010;5:437–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Kang H, Fisher MH, Xu D, Miyamoto YJ, Marchand A, Van Aerschot A, Herdewijn P, Juliano RL. Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Res. 2004;32:4411–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Xu D, Ye D, Fisher M, Juliano RL. Selective inhibition of P-glycoprotein expression in multidrug-resistant tumor cells by a designed transcriptional regulator. J Pharmacol Exp Ther. 2002;302:963–71.

    CAS  PubMed  Google Scholar 

  70. Kowalski P, Stein U, Scheffer GL, Lage H. Modulation of the atypical multidrug-resistant phenotype by a hammerhead ribozyme directed against the ABC transporter BCRP/MXR/ABCG2. Cancer Gene Ther. 2002;9:579–86.

    CAS  PubMed  Google Scholar 

  71. Chau M, Christensen JL, Ajami AM, Capizzi RL. Amonafide, a topoisomerase II inhibitor, is unaffected by P-glycoprotein-mediated efflux. Leuk Res. 2008;32:465–73.

    CAS  PubMed  Google Scholar 

  72. Allen SL, Lundberg AS. Amonafide: a potential role in treating acute myeloid leukemia. Expert Opin Investig Drugs. 2011;20:995–1003.

    CAS  PubMed  Google Scholar 

  73. Riganti C, Voena C, Kopecka J, Corsetto PA, Montorfano G, Enrico E, Costamagna C, Rizzo AM, Ghigo D, Bosia A. Liposome-encapsulated doxorubicin reverses drug resistance by inhibiting P-glycoprotein in human cancer cells. Mol Pharm. 2011;8:683–700.

    CAS  PubMed  Google Scholar 

  74. Liang GW, Lu WL, Wu JW, Zhao JH, Hong HY, Long C, Li T, Zhang YT, Zhang H, Wang JC, Zhang X, Zhang Q. Enhanced therapeutic effects on the multi-drug resistant human leukemia cells in vitro and xenograft in mice using the stealthy liposomal vincristine plus quinacrine. Fundam Clin Pharmacol. 2008;22:429–37.

    CAS  PubMed  Google Scholar 

  75. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJ, Wilkinson GR. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16:408–14.

    CAS  PubMed  Google Scholar 

  76. Patel J, Mitra AK. Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics. 2001;2:401–15.

    CAS  PubMed  Google Scholar 

  77. Eckford PD, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev. 2009;109:2989–3011.

    CAS  PubMed  Google Scholar 

  78. Roy S, Kenny E, Kennedy S, Larkin A, Ballot J, Perez De Villarreal M, Crown J, O’Driscoll L. MDR1/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer. Anticancer Res. 2007;27:1325–30.

    CAS  PubMed  Google Scholar 

  79. Li J, Li ZN, Du YJ, Li XQ, Bao QL, Chen P. Expression of MRP1, BCRP, LRP, and ERCC1 in advanced non-small-cell lung cancer: correlation with response to chemotherapy and survival. Clin Lung Cancer. 2009;10:414–21.

    CAS  PubMed  Google Scholar 

  80. Lopez D, Martinez-Luis S. Marine natural products with P-glycoprotein inhibitor properties. Mar Drugs. 2014;12:525–46.

    PubMed Central  PubMed  Google Scholar 

  81. Davis RA, Carroll AR, Pierens GK, Quinn RJ. New lamellarin alkaloids from the australian ascidian, didemnum chartaceum. J Nat Prod. 1999;62:419–24.

    CAS  PubMed  Google Scholar 

  82. Bailly C. Lamellarins, from A to Z: a family of anticancer marine pyrrole alkaloids. Curr Med Chem Anticancer Agents. 2004;4:363–78.

    CAS  PubMed  Google Scholar 

  83. Quesada AR, Garcia Gravalos MD, Fernandez Puentes JL. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br J Cancer. 1996;74:677–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KL, Ling V. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature. 1986;324:485–9.

    CAS  PubMed  Google Scholar 

  85. Aoki S, Yoshioka Y, Miyamoto Y, Higuchi K, Setiawan A, Murakami N, Chen Z-S, Sumizawa T, Akiyama S-I, Kobayashi M. Agosterol A, a novel polyhydroxylated sterol acetate reversing multidrug resistance from a marine sponge of Spongia sp. Tetrahedron Lett. 1998;39:6303–6.

    CAS  Google Scholar 

  86. Aoki S, Setiawan A, Yoshioka Y, Higuchi K, Fudetani R, Chen Z-S, Sumizawa T, S-i A, Kobayashi M. Reversal of Multidrug resistance in human carcinoma cell line by agosterols, marine spongean sterols. Tetrahedron. 1999;55:13965–72.

    CAS  Google Scholar 

  87. Aoki S, Chen ZS, Higasiyama K, Setiawan A, Akiyama S, Kobayashi M. Reversing effect of agosterol A, a spongean sterol acetate, on multidrug resistance in human carcinoma cells. Jpn J Cancer Res. 2001;92:886–95.

    CAS  PubMed  Google Scholar 

  88. Chen ZS, Aoki S, Komatsu M, Ueda K, Sumizawa T, Furukawa T, Okumura H, Ren XQ, Belinsky MG, Lee K, Kruh GD, Kobayashi M, Akiyama S. Reversal of drug resistance mediated by multidrug resistance protein (MRP) 1 by dual effects of agosterol A on MRP1 function. Int J Cancer. 2001;93:107–13.

    CAS  PubMed  Google Scholar 

  89. Rinehart KL, Holt TG, Fregeau NL, Keifer PA, Wilson GR, Perun Jr TJ, Sakai R, Thompson AG, Stroh JG, Shield LS, et al. Bioactive compounds from aquatic and terrestrial sources. J Nat Prod. 1990;53:771–92.

    CAS  PubMed  Google Scholar 

  90. Rinehart KL. Antitumor compounds from tunicates. Med Res Rev. 2000;20:1–27.

    CAS  PubMed  Google Scholar 

  91. Cuevas C, Perez M, Martin MJ, Chicharro JL, Fernandez-Rivas C, Flores M, Francesch A, Gallego P, Zarzuelo M, de La Calle F, Garcia J, Polanco C, Rodriguez I, Manzanares I. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett. 2000;2:2545–8.

    CAS  PubMed  Google Scholar 

  92. Zewail-Foote M, Hurley LH. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J Med Chem. 1999;42:2493–7.

    CAS  PubMed  Google Scholar 

  93. Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004;67:1216–38.

    CAS  PubMed  Google Scholar 

  94. Ryan DP, Supko JG, Eder JP, Seiden MV, Demetri G, Lynch TJ, Fischman AJ, Davis J, Jimeno J, Clark JW. Phase I and pharmacokinetic study of ecteinascidin 743 administered as a 72-hour continuous intravenous infusion in patients with solid malignancies. Clin Cancer Res. 2001;7:231–42.

    CAS  PubMed  Google Scholar 

  95. Taamma A, Misset JL, Riofrio M, Guzman C, Brain E, Lopez Lazaro L, Rosing H, Jimeno JM, Cvitkovic E. Phase I and pharmacokinetic study of ecteinascidin-743, a new marine compound, administered as a 24-hour continuous infusion in patients with solid tumors. J Clin Oncol. 2001;19:1256–65.

    CAS  PubMed  Google Scholar 

  96. Delaloge S, Yovine A, Taamma A, Riofrio M, Brain E, Raymond E, Cottu P, Goldwasser F, Jimeno J, Misset JL, Marty M, Cvitkovic E. Ecteinascidin-743: a marine-derived compound in advanced, pretreated sarcoma patients—preliminary evidence of activity. J Clin Oncol. 2001;19:1248–55.

    CAS  PubMed  Google Scholar 

  97. Jin S, Gorfajn B, Faircloth G, Scotto KW. Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci U S A. 2000;97:6775–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 2001;7:584–90.

    CAS  PubMed  Google Scholar 

  99. Minuzzo M, Marchini S, Broggini M, Faircloth G, D’Incalci M, Mantovani R. Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743. Proc Natl Acad Sci U S A. 2000;97:6780–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Erba E, Bergamaschi D, Bassano L, Ronzoni S, Di Liberti G, Muradore I, Vignati S, Faircloth G, Jimeno J, D’Incalci M. Isolation and characterization of an IGROV-1 human ovarian cancer cell line made resistant to Ecteinascidin-743 (ET-743). Br J Cancer. 2000;82:1732–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Kanzaki A, Takebayashi Y, Ren XQ, Miyashita H, Mori S, Akiyama S, Pommier Y. Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743. Mol Cancer Ther. 2002;1:1327–34.

    CAS  PubMed  Google Scholar 

  102. Carter NJ, Keam SJ. Trabectedin: a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs. 2007;67:2257–76.

    CAS  PubMed  Google Scholar 

  103. Stratmann K, Burgoyne DL, Moore RE, Patterson GML. Hapalosin, a cyanobacterial cyclic depsipeptide with multidrug-resistance reversing activity. J Organ Chem. 1994;59:7219–26.

    CAS  Google Scholar 

  104. O’Connell CE, Salvato KA, Meng Z, Littlefield BA, Schwartz CE. Synthesis and evaluation of hapalosin and analogs as MDR-reversing agents. Bioorg Med Chem Lett. 1999;9:1541–6.

    PubMed  Google Scholar 

  105. Kang H, Fenical W. Ningalins A-D: novel aromatic alkaloids from a Western Australian ascidian of the genus didemnum. J Org Chem. 1997;62:3254–62.

    CAS  PubMed  Google Scholar 

  106. Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q. Total syntheses of ningalin A, lamellarin O, lukianol A, and permethyl storniamide A utilizing heterocyclic azadiene Diels–Alder reactions. J Am Chem Soc. 1998;121:54–62.

    Google Scholar 

  107. Boger DL, Soenen DR, Boyce CW, Hedrick MP, Jin Q. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels-Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents. J Org Chem. 2000;65:2479–83.

    CAS  PubMed  Google Scholar 

  108. Soenen DR, Hwang I, Hedrick MP, Boger DL. Multidrug resistance reversal activity of key ningalin analogues. Bioorg Med Chem Lett. 2003;13:1777–81.

    CAS  PubMed  Google Scholar 

  109. Chou TC, Guan Y, Soenen DR, Danishefsky SJ, Boger DL. Potent reversal of multidrug resistance by ningalins and its use in drug combinations against human colon carcinoma xenograft in nude mice. Cancer Chemother Pharmacol. 2005;56:379–90.

    CAS  PubMed  Google Scholar 

  110. Zhang PY, Wong IL, Yan CS, Zhang XY, Jiang T, Chow LM, Wan SB. Design and syntheses of permethyl ningalin B analogues: potent multidrug resistance (MDR) reversal agents of cancer cells. J Med Chem. 2010;53:5108–20.

    CAS  PubMed  Google Scholar 

  111. Shmueli U, Carmely S, Groweiss A, Kashman Y. Sipholenol and sipholenone, two new triterpenes from the marine sponge siphonochalina siphonella (levi). Tetrahedron Lett. 1981;22:709–12.

    CAS  Google Scholar 

  112. Carmely S, Kashman Y. The sipholanes, a novel group of triterpenes from the marine sponge Siphonochalina siphonella. J Org Chem. 1983;48:3517–25.

    CAS  Google Scholar 

  113. Carmely S, Loya Y, Kashman Y. Siphenellinol, a new triterpene from the marine sponge siphonochalinasiphonella. Tetrahedron Lett. 1983;24:3673–6.

    CAS  Google Scholar 

  114. Carmely S, Kashman Y. Neviotine-A, a new triterpene from the red sea sponge Siphonochalina siphonella. J Org Chem. 1986;51:784–8.

    CAS  Google Scholar 

  115. Jain S, Laphookhieo S, Shi Z, Fu LW, Akiyama S, Chen ZS, Youssef DT, van Soest RW, El Sayed KA. Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Nat Prod. 2007;70:928–31.

    CAS  PubMed  Google Scholar 

  116. Shi Z, Jain S, Kim IW, Peng XX, Abraham I, Youssef DT, Fu LW, El Sayed K, Ambudkar SV, Chen ZS. Sipholenol A, a marine-derived sipholane triterpene, potently reverses P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Cancer Sci. 2007;98:1373–80.

    CAS  PubMed  Google Scholar 

  117. Abraham I, Jain S, Wu CP, Khanfar MA, Kuang Y, Dai CL, Shi Z, Chen X, Fu L, Ambudkar SV, El Sayed K, Chen ZS. Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Biochem Pharmacol. 2010;80:1497–506.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc. 1985;107:4796–8.

    CAS  Google Scholar 

  119. Hirata Y, Uemura D. Halichondrins: antitumor polyether macrolides fromamarinesponge. Pure Appl Chem. 1986;58:701.

    CAS  Google Scholar 

  120. Pettit GR, Herald CL, Boyd MR, Leet JE, Dufresne C, Doubek DL, Schmidt JM, Cerny RL, Hooper JN, Rutzler KC. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem. 1991;34:3339–40.

    CAS  PubMed  Google Scholar 

  121. Pettit GR, Tan R, Gao F, Williams MD, Doubek DL, Boyd MR, Schmidt JM, Chapuis JC, Hamel E. Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri. J Org Chem. 1993;58:2538–43.

    CAS  Google Scholar 

  122. Twelves C, Cortes J, Vahdat LT, Wanders J, Akerele C, Kaufman PA. Phase III trials of eribulin mesylate (E7389) in extensively pretreated patients with locally recurrent or metastatic breast cancer. Clin Breast Cancer. 2010;10:160–3.

    CAS  PubMed  Google Scholar 

  123. Cortes J, Vahdat L, Blum JL, Twelves C, Campone M, Roche H, Bachelot T, Awada A, Paridaens R, Goncalves A, Shuster DE, Wanders J, Fang F, Gurnani R, Richmond E, Cole PE, Ashworth S, Allison MA. Phase II study of the halichondrin B analog eribulin mesylate in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline, a taxane, and capecitabine. J Clin Oncol. 2010;28:3922–8.

    CAS  PubMed  Google Scholar 

  124. Tan AR, Rubin EH, Walton DC, Shuster DE, Wong YN, Fang F, Ashworth S, Rosen LS. Phase I study of eribulin mesylate administered once every 21 days in patients with advanced solid tumors. Clin Cancer Res. 2009;15:4213–9.

    CAS  PubMed  Google Scholar 

  125. Goel S, Mita AC, Mita M, Rowinsky EK, Chu QS, Wong N, Desjardins C, Fang F, Jansen M, Shuster DE, Mani S, Takimoto CH. A phase I study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced solid malignancies. Clin Cancer Res. 2009;15:4207–12.

    CAS  PubMed  Google Scholar 

  126. Smith JA, Wilson L, Azarenko O, Zhu X, Lewis BM, Littlefield BA, Jordan MA. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry. 2010;49:1331–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790–803.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Okouneva T, Azarenko O, Wilson L, Littlefield BA, Jordan MA. Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol Cancer Ther. 2008;7:2003–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, Littlefield BA, Wilson L. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther. 2005;4:1086–95.

    CAS  PubMed  Google Scholar 

  130. Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, Dipietro LV, Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ, Littlefield BA. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 2001;61:1013–21.

    CAS  PubMed  Google Scholar 

  131. Narayan S, Carlson EM, Cheng H, Du H, Hu Y, Jiang Y, Lewis BM, Seletsky BM, Tendyke K, Zhang H, Zheng W, Littlefield BA, Towle MJ, Yu MJ. Novel second generation analogs of eribulin. Part I: compounds containing a lipophilic C32 side chain overcome P-glycoprotein susceptibility. Bioorg Med Chem Lett. 2011;21:1630–3.

    CAS  PubMed  Google Scholar 

  132. Prinsep MR, Patterson GML, Larsen LK, Smith CD. Tolyporphins J and K, two further porphinoid metabolites from the cyanobacterium tolypothrix nodosa. J Nat Prod. 1998;61:1133–6.

    CAS  PubMed  Google Scholar 

  133. Stratmann K, Moore RE, Bonjouklian R, Deeter JB, Patterson GML, Shaffer S, Smith CD, Smitka TA. Welwitindolinones, unusual alkaloids from the blue-green algae hapalosiphon welwitschii and westiella intricata relationship to fischerindoles and hapalinodoles. J Am Chem Soc. 1994;116:9935–42.

    CAS  Google Scholar 

  134. Rochfort SJ, Capon RJ. Parguerenes revisited: new brominated diterpenes from the Southern Australian marine Red Alga < I > Laurencia Filiformis</I> Aust J Chem. 1996;49:19–26.

    CAS  Google Scholar 

  135. Huang XC, Sun YL, Salim AA, Chen ZS, Capon RJ. Parguerenes: marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells. Biochem Pharmacol. 2013;85:1257–68.

    CAS  PubMed  Google Scholar 

  136. Shipp LE, Hamdoun A. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Dev Dyn. 2012;241:1111–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Li J, Jaimes KF, Aller SG. Refined structures of mouse P-glycoprotein. Protein Sci. 2014;23:34–46.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-Sheng Chen M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, A., Wang, DS., Sim, HM., Ambudkar, S.V., Chen, ZS. (2015). ABC Transporter Modulatory Drugs from Marine Sources: A New Approach to Overcome Drug Resistance in Cancer. In: Efferth, T. (eds) Resistance to Targeted ABC Transporters in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09801-2_8

Download citation

Publish with us

Policies and ethics