Skip to main content

Nanotechnology to Combat Multidrug Resistance in Cancer

  • Chapter
  • First Online:
Resistance to Targeted ABC Transporters in Cancer

Abstract

Multidrug resistance (MDR) in cancer is a prime obstacle toward successful cancer chemotherapy which is the combination of the complicated mechanisms involving abnormal vasculature, localized area of hypoxia, upregulated ABC transporters, aerobic glycolysis, elevated apoptotic threshold, and increased interstitial fluid pressure. Nanomedicines in targeted cancer chemotherapy hold great promise as an effective approach to prevail over MDR. Extensive research has been conducted to get success in development of Nanomedicines against MDR that introduced many of them as personalized medicine and in different clinical stages. Nanomedicines can be preferentially accumulated in tumor areas by EPR and by active targeting of upregulated processes such as ABC transporters of cancer cells. In this review, we aimed to discuss different nanomedicines that showed promises against MDR in cancer and improved the chemotherapeutic efficacy in the last decade. Moreover, different cellular and physiological factors that underlie MDR in cancer will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP binding cassette

ASOs:

Antisense oligonucleotides

Au-NPs:

Gold nanoparticles

BCRP:

Breast cancer resistance protein

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine

DOXO:

Doxorubicin

EPC:

Egg phosphatidylcholine

EPR:

Enhanced permeation and retention

FDA:

Food and drug administration

HCC:

Hepatocellular carcinoma cells

HIF:

Hypoxia-inducible factors

MDR:

Multidrug resistance

MNSP:

Mesoporous silica nanoparticles

MRP:

Multidrug resistance-associated protein

MX-LPG:

Mitoxantrone incorporated liposome

NBD:

Nucleotide binding domain

NFκB:

Nuclear factor kappa B

NOS:

Nitric oxide synthase

NP:

Nanoparticle

PAX:

Paclitaxel

PCL:

Poly(ε-caprolactone)

PEG:

Poly(ethylene glycol)

P-gp:

P-Glycoprotein

pHe:

Extracellular pH

PHSM/f:

pH-sensitive micelles with folate

PLGA:

Poly(lactic-co-glycolic acid)

PSS:

Protonation, sequestration, and secretion

RES:

Reticuloendothelial system

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

SLN:

Solid lipid nanoparticle

TBD:

Transmembrane domain

Tf-R:

Transferrin receptor

TGF-β:

Transforming growth factor beta

TNF:

Human tumor necrosis factor

TRAIL:

TNF-related apoptosis inducing ligand

VEGF:

Vascular endothelial growth factor

References

  1. Akhter S, Ahmad I, Ahmad MZ, et al. Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets. 2013;13:362–78.

    Article  CAS  PubMed  Google Scholar 

  2. Jamal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  3. Liang XJ, Chen C, Zhao Y, et al. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol. 2010;596:467–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Bock C, Lengauer T. Managing drug resistance in cancer: lessons from HIV therapy. Nat Rev Cancer. 2012;12:494–501.

    Article  CAS  PubMed  Google Scholar 

  5. Saraswathy M, Gong S. Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv. 2013;31:1397–407.

    Article  CAS  PubMed  Google Scholar 

  6. Wilting RH, Dannenberg JH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat. 2012;15:21–38.

    Article  CAS  PubMed  Google Scholar 

  7. Gillet JP and Gottesman MM. Mechanisms of multidrug resistance in cancer. In Multidrug resistance in cancer, Jun Zhou (Ed). Humana press, Totowa, NJ, USA, 2010, 47–76.

    Google Scholar 

  8. Shapira A, Livney YD, Broxterman HJ, et al. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat. 2011;14:150–63.

    Article  CAS  PubMed  Google Scholar 

  9. Gillet JP, Gottesman M. Mechanisms of multidrug resistance in cancer. In: Zhou J, editor. Multi-drug resistance in cancer. Totowa, NJ: Humana; 2001. p. 47–76.

    Google Scholar 

  10. Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012;30:679–92.

    Article  CAS  PubMed  Google Scholar 

  11. Yin Q, Shen J, Zhang Z, et al. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev. 2013;30:1699–715.

    Article  CAS  Google Scholar 

  12. Gao ZB, Zhang LN, Sun YJ. Nanotechnology applied to overcome tumor drug resistance. J Control Release. 2012;162:45–55.

    Article  CAS  PubMed  Google Scholar 

  13. Dong XW, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine. 2010;5:597–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bu HH, Gao Y, Li YP. Overcoming multidrug resistance (MDR) in cancer by nanotechnology. Chin J Cancer. 2010;53:2226–32.

    CAS  Google Scholar 

  15. Hu CMJ, Zhang LF. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83:1104–11.

    Article  CAS  PubMed  Google Scholar 

  16. Montesinos RN, Beduneau A, Pellequer Y, et al. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release. 2012;161:50–61.

    Article  CAS  Google Scholar 

  17. Nobili S, Landini I, Mazzei T, et al. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev. 2012;32:1220–62.

    Article  CAS  PubMed  Google Scholar 

  18. Hu CM, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;108:836–41.

    Article  Google Scholar 

  19. Alexis F, Rhee JW, Richie JP, et al. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26:74–85.

    Article  CAS  PubMed  Google Scholar 

  20. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharmacol Res. 2006;23:1417–50.

    Article  CAS  Google Scholar 

  21. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  CAS  PubMed  Google Scholar 

  22. Dawar S, Singh N, Kanwar RK. Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discov Today. 2013;18:1292–300.

    Article  CAS  PubMed  Google Scholar 

  23. Patel NR, Pattni BS, Abouzeid AH. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65:1748–62.

    Article  CAS  PubMed  Google Scholar 

  24. Kirtane AR, Kalscheuer SM, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv Drug Deliv Rev. 2013;65:1731–47.

    Article  CAS  PubMed  Google Scholar 

  25. Markman JL, Rekechenetskiy A, Holler E, et al. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65:1866–79.

    Article  CAS  PubMed  Google Scholar 

  26. Hung LW, Wang IX, Nikaido K, et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature. 1998;396:703–7.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev. 1998;22:1–20.

    Article  CAS  PubMed  Google Scholar 

  28. Volk EL, Farley KM, Wu Y, et al. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res. 2002;62:5035–40.

    CAS  PubMed  Google Scholar 

  29. Grant CE, Valdimarsson G, Hipfner DR, et al. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res. 1994;54:357–61.

    CAS  PubMed  Google Scholar 

  30. Allen JD, Brinkhuis RF, van Deemter L, et al. Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Res. 2000;60:5761–6.

    CAS  PubMed  Google Scholar 

  31. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  32. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  34. Moll UM, Wolff S, Speidel D. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005;17:631–6.

    Article  CAS  PubMed  Google Scholar 

  35. Indran IR, Tufo G, Pervaiz S. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 2011;1807:735–45.

    Article  CAS  PubMed  Google Scholar 

  36. Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res. 2005;94:143–96.

    CAS  PubMed  Google Scholar 

  37. Schuyer M, van der Burg ME. Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX. and BCL-2. Br J Cancer. 2001;85:1359–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  39. Metzinger DS, Taylor DD, Gercel-Taylor C. Induction of p53 and drug resistance following treatment with cisplatin or paclitaxel in ovarian cancer cell lines. Cancer Lett. 2006;236:302–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci. 2008;65:3145–67.

    Article  CAS  PubMed  Google Scholar 

  41. Li W, Melton DW. Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene. 2012;31:2412–22.

    Article  CAS  PubMed  Google Scholar 

  42. Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res. 2006;4:61–70.

    Article  CAS  PubMed  Google Scholar 

  43. Tredan O, Galmarini CM, Patel K. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.

    Article  CAS  PubMed  Google Scholar 

  44. Less JR, Posner MC, Boucher Y, et al. Interstitial hypertension in human breast and colorectal tumors. Cancer Res. 1992;52:6371–4.

    CAS  PubMed  Google Scholar 

  45. Heldin CH, Rubin K, Pietras K, et al. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–13.

    Article  CAS  PubMed  Google Scholar 

  46. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–39.

    Article  CAS  PubMed  Google Scholar 

  47. Weber CE, Kuo PC. The tumor microenvironment. Surg Oncol. 2012;21:172–7.

    Article  PubMed  Google Scholar 

  48. Hypoxia DNC. HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705–13.

    Article  CAS  Google Scholar 

  49. Lee ES, Gao Z, Bae YH, et al. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132:164–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2002;4:437–47.

    Article  CAS  Google Scholar 

  51. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11: 393–410.

    Article  CAS  PubMed  Google Scholar 

  52. Song X, Liu X, Chi W, et al. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol. 2006;58:776–84.

    Article  CAS  PubMed  Google Scholar 

  53. Jabr-Milane LS, van Vlerken LE, Yadav S, et al. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wojtkowiak JW, Verduzco D, Schramm KJ, et al. Drug resistance and cellular adaptation to tumor acidic pH Microenvironment. Mol Pharm. 2011;8:2032–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wenzel M, Mahotka C, Krieg A. Novel survivin-related members of the inhibitor of apoptosis (IAP) family. Cell Death Differ. 2000;7:682–3.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.

    Article  PubMed  CAS  Google Scholar 

  57. Longo-Sorbello GS, Bertino JR. Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica. 2001;86:121–7.

    CAS  PubMed  Google Scholar 

  58. Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev. 2013;65:1716–30.

    Article  CAS  PubMed  Google Scholar 

  59. Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv. 2013;2013:705265.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Torchilin VP. Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents. Ther Deliv. 2010;1:257–72.

    Article  CAS  PubMed  Google Scholar 

  62. Yang T, Choi MK, Cui FD, et al. Antitumor effect of paclitaxel-loaded pegylated immunoliposomes against human breast cancer cells. Pharm Res. 2007;24:2402–11.

    Article  CAS  PubMed  Google Scholar 

  63. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  64. Needham D, Anyarambhatla G, Kong G, et al. A new temperature sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60:1197–201.

    CAS  PubMed  Google Scholar 

  65. Mangala LS, Zuzel V, Schmandt R, et al. Therapeutic targeting of ATP7B in ovarian carcinoma. Clin Cancer Res. 2009;15:3770–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Riganti C, Voena C, Kopecka J, et al. Liposome-encapsulated doxorubicin reverses drug resistance by inhibiting P-glycoprotein in human cancer cells. Mol Pharm. 2000;8:683–700.

    Article  CAS  Google Scholar 

  67. Pakunlu RI, Wang Y, Saad M, et al. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J Control Release. 2006;114:153–62.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X, Guo S, Fan R, et al. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials. 2012;33:7103–14.

    Article  CAS  PubMed  Google Scholar 

  69. Kobayashi T, Ishida T, Okada Y, et al. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm. 2007;329: 94–102.

    Article  CAS  PubMed  Google Scholar 

  70. Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53.

    Article  CAS  PubMed  Google Scholar 

  71. Kwon G, Naito M, Yokoyama M, et al. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release. 1997;48:195–201.

    Article  CAS  Google Scholar 

  72. Yang XQ, Deng WJ, Fu LW. Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res A. 2008;86A:48–60.

    Article  CAS  Google Scholar 

  73. Lee AL, Dhillon SH, Wang Y, et al. Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. Mol Biosyst. 2011;7:1512–22.

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad J, Kohli K, Mir SR, Amin S. Lipid based nanocarriers for oral delivery of cancer chemotherapeutics: an insight in the intestinal lymphatic transport. Drug Deliv Lett. 2013;3:38–46.

    Article  CAS  Google Scholar 

  75. Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6:928–39.

    Article  CAS  PubMed  Google Scholar 

  76. Mattheolabakis GB, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond). 2012;7:1577–90.

    Article  CAS  Google Scholar 

  77. Koziara JM, Whisman TR, Tseng MT, et al. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release. 2006;112:312–9.

    Article  CAS  PubMed  Google Scholar 

  78. Yang Y, Wang Z, Li M, et al. Chitosan/pshRNA plasmid nanoparticles targeting MDR1 gene reverse paclitaxel resistance in ovarian cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2009;29:239–42.

    Article  PubMed  CAS  Google Scholar 

  79. Susa M, Iyer AK, Ryu K. Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer. 2009;9:399.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Misra R, Sahoo SK. Coformulation of doxorubicin and curcumin in poly(d, l-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm. 2011;8:852–66.

    Article  CAS  PubMed  Google Scholar 

  81. Lei T, Srinivasan S, Tang Y, Fernandez-Fernandez A, McGoron AJ. Comparing cellular uptake and cytotoxicity of targeted drug carriers in cancer cell lines with different drug resistance mechanisms. Nanomedicine. 2011;7:324–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Shieh MJ, Hsu CY, Huang LY, Chen HY, Huang FH, Lai PS. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J Control Release. 2011;152:418–25.

    Article  CAS  PubMed  Google Scholar 

  83. Maeng JH, Lee DH, Jung KH, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010;31:4995–5006.

    Article  CAS  PubMed  Google Scholar 

  84. Lim J, Simanek EE. Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev. 2012;64:826–35.

    Article  CAS  PubMed  Google Scholar 

  85. Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm. 2013;84:1–20.

    Article  CAS  PubMed  Google Scholar 

  86. Lee CC, Gillies ER, Fox ME. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A. 2006;103:16649–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Qiu LY, Wang RJ, Zheng C, et al. Beta-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery. Nanomedicine (Lond). 2010;5:193–208.

    Article  CAS  Google Scholar 

  88. Batrakova EV, Kelly DL, Li S, et al. Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient: pluronic P85. Mol Pharm. 2006;3:113–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4:713–22.

    Article  CAS  PubMed  Google Scholar 

  90. Podsiadlo P, Sinani VA, Bahng JH, et al. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir. 2008;24:568–74.

    Article  CAS  PubMed  Google Scholar 

  91. Arvizo R, Bhattacharya R, Mukherjee P, et al. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7:753–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16:6139–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Gu YJ, Cheng J, Man CW, et al. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine. 2012;8:204–11.

    Article  CAS  PubMed  Google Scholar 

  94. Wang F, Wang YC, Dou S, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5:3679–92.

    Article  CAS  PubMed  Google Scholar 

  95. Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys Appl Phys. 2003;36:R167.

    Article  CAS  Google Scholar 

  96. Bhattacharyya S, Kudgus RA, Bhattacharya R, et al. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28:237–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Wang X, Zhang R, Wu C, et al. The application of Fe3O4 nanoparticles in cancer research: a new strategy to inhibit drug resistance. J Biomed Mater Res A. 2007;80:852–60.

    Article  PubMed  CAS  Google Scholar 

  98. Huang IP, Sun SP, Cheng SH, et al. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Mol Cancer Ther. 2011;10:761–9.

    Article  CAS  PubMed  Google Scholar 

  99. Meng H, Liong M, Xia T, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4:4539–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Shen J, He Q, Gao Y, et al. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale. 2011;3:4314–22.

    Article  CAS  PubMed  Google Scholar 

  101. Chen AM, Zhang M, Wei D, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009;5:2673–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Sinha N, Yeow JT. Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience. 2005;4:180–95.

    Article  PubMed  Google Scholar 

  103. Fabbro C, Ali-Boucetta H, Da Ros T, et al. Targeting carbon nanotubes against cancer. Chem Commun (Camb). 2012;48:3911–26.

    Article  CAS  Google Scholar 

  104. Li R, Wu R, Zhao L, et al. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano. 2010;4:1399–408.

    Article  CAS  PubMed  Google Scholar 

  105. Subedi RK, Kang KW, Choi HK, et al. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508–13.

    Article  CAS  PubMed  Google Scholar 

  106. Kang KW, Chun MK, Kim O, et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine. 2010;6:210–3.

    Article  CAS  PubMed  Google Scholar 

  107. Shuhendler AJ, Cheung RY, Manias J, et al. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treat. 2009;119:255–69.

    Article  PubMed  CAS  Google Scholar 

  108. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6: 688–701.

    Article  CAS  PubMed  Google Scholar 

  109. Sirova M, Mrkvan T, Etrych T, et al. Preclinical evaluation of linear HPMA-doxorubicin conjugates with pH-sensitive drug release: efficacy, safety, and immunomodulating activity in murine model. Pharm Res. 2010;27:200–8.

    Article  CAS  PubMed  Google Scholar 

  110. Yadav S, Van Vlerken LE, Little SR, et al. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol. 2009;63:711–22.

    Article  CAS  PubMed  Google Scholar 

  111. Yamashiro DJ, Maxfield FR. Regulation of endocytic processes by pH. Trends Pharmacol Sci. 1998;9:190–3.

    Article  Google Scholar 

  112. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumours. Int J Hyperthermia. 1995;11:211–6.

    Article  CAS  PubMed  Google Scholar 

  113. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release. 2005;103:405–18.

    Article  CAS  PubMed  Google Scholar 

  114. Chen R, Khormaee S, Eccleston ME, et al. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides. Biomaterials. 2009;30:1954–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. He Q, Gao Y, Zhang L, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32:7711–20.

    Article  CAS  PubMed  Google Scholar 

  116. Kim D, Gao ZG, Lee ES, et al. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm. 2009;6:1353–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Declaration of interest: The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Akhter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akhter, S. et al. (2015). Nanotechnology to Combat Multidrug Resistance in Cancer. In: Efferth, T. (eds) Resistance to Targeted ABC Transporters in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09801-2_10

Download citation

Publish with us

Policies and ethics