Skip to main content

e-Functions and the Campbell-Hausdorff Formula

  • Chapter
  • First Online:
Symmetric Spaces and the Kashiwara-Vergne Method

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2115))

  • 1019 Accesses

Abstract

The goal of this chapter is to adapt the Kashiwara-Vergne method to an arbitrary symmetric space. We show that it admits an e-function, which can be constructed by means of the Campbell-Hausdorff formula. We prove several properties of this function which reflect, by Chap. 3, on invariant analysis on the space. The results extend to line bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Applying \(\mathop{\mathrm{ch}}\nolimits y\), resp. \(\mathop{\mathrm{sh}}\nolimits y\), instead and adding eliminates \(\overline{A}\) and gives back the expression (4.6) of \(\overline{Z}\).

  2. 2.

    See e.g. Bourbaki, Intégration, chap. VII, Sect 2, no. 6.

  3. 3.

    An explicit expression of U 3 and U 5 is given by Lemma 4.30.

  4. 4.

    The result also follows from (4.37) directly, since we have here \(\mathop{\mathrm{tr}}\nolimits _{\mathfrak{h}}\mathop{ \mathrm{ad}}\nolimits \mathfrak{h}_{{\ast}} = 0\) and \(\mathop{\mathrm{tr}}\nolimits _{\mathfrak{h}}[y,\partial _{Y }C] = 0\), C being even.

  5. 5.

    See also the correction in [15].

Bibliography

  1. Albert, L., Harinck, P., Torossian, C.: Solution non universelle pour le problème KV 78. J. Lie Theory 18, 617–626 (2008); arXiv:0802.2049 (2008)

    Google Scholar 

  2. Alekseev, A., Enriquez, B., Torossian, C.: Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations. Publ. Math. I.H.E.S. 112, 146–189 (2010); arXiv:0903.4067 (2009)

    Google Scholar 

  3. Alekseev, A., Meinrenken, E.: Poisson geometry and the Kashiwara-Vergne conjecture. C. R. Acad. Sci. Paris Série I 335, 723–728 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alekseev, A., Meinrenken, E.: Lie theory and the Chern-Weil homomorphism. Ann. Sci. École Norm. Sup. 38, 303–338 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Alekseev, A., Meinrenken, E.: On the Kashiwara-Vergne conjecture. Invent. Math. 164, 615–634 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alekseev, A., Petracci, E.: Low order terms of the Campbell-Hausdorff series and the Kashiwara-Vergne conjecture. J. Lie Theory 16, 531–538 (2006); arXiv:math.QA/0508077 (2005)

    Google Scholar 

  7. Alekseev, A., Torossian, C.: The Kashiwara-Vergne conjecture and Drinfeld’s associators. Ann. Math. 175, 415–463 (2012); arXiv:0802.4300 (2008)

    Google Scholar 

  8. Alekseev, A., Torossian, C.: On triviality of the Kashiwara-Vergne problem for quadratic Lie algebras. C. R. Acad. Sci. Paris Série I, 347, 1231–1236 (2009); arXiv:0909.3743 (2009)

    Google Scholar 

  9. Andler, M., Sahi, S., Torossian, C.: Convolution of invariant distributions: proof of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004); arXiv:math.QA/0104100 (2001).

    Google Scholar 

  10. Benoist, Y.: Sur l’algèbre des opérateurs différentiels invariants sur un espace symétrique nilpotent. C. R. Acad. Sci. Paris Série A 295, 59–62 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdorff and Dynkin. Lecture Notes in Mathematics, vol. 2034. Springer, Heidelberg (2012)

    Google Scholar 

  12. Burgunder, E.: Eulerian idempotent and Kashiwara-Vergne conjecture. Ann. Inst. Fourier 58, 1153–1184 (2008); arXiv:math.QA/0612548 (2006)

    Google Scholar 

  13. Casas, F., Murua, A.: An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications. J. Math. Phys. 50, 033513 (2009); arXiv:0810.2656 (2008)

    Google Scholar 

  14. Cattaneo, A., Torossian, C.: Quantification pour les paires symétriques et diagrammes de Kontsevich. Ann. Sci. École Norm. Sup. 41, 789–854 (2008); arXiv:math.RT/0609693 (2006)

    Google Scholar 

  15. Cattaneo, A., Rossi, C., Torossian, C.: Biquantization of symmetric pairs and the quantum shift. J. Geom. Phys. 74, 211–250 (2013); arXiv:1105.5973v2 (2012)

    Google Scholar 

  16. Dooley, A.H.: Orbital convolutions, wrapping maps and e-functions. In: Proceedings of the Centre for Mathematical Analysis and Its Applications, vol. 39, pp. 42–49. Australian National University Press, Canberra (2001)

    Google Scholar 

  17. Dooley, A.H., Rice, J.W.: On contractions of semi-simple Lie groups. Trans. Am. Math. Soc. 289, 185–202 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. École Norm. Sup. 10, 265–288 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Duflo, M.: Opérateurs différentiels invariants sur un espace symétrique. C. R. Acad. Sci. Paris Série I Math. 289, 135–137 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Duistermaat, J.J.: On the similarity between the Iwasawa projection and the diagonal part. Mém. Soc. Math. France n 15, 129–138 (1984)

    Google Scholar 

  21. Etingof, P., Schiffman, O.: Lectures on Quantum Groups. International Press, Cambridge (1998)

    MATH  Google Scholar 

  22. Flensted-Jensen, M., Koornwinder, T.: The convolution structure for Jacobi function expansions. Ark. Mat. 10, 245–262 (1973)

    Article  MathSciNet  Google Scholar 

  23. Graczyk, P., Sawyer, P.: On the kernel of the product formula on symmetric spaces. J. Geom. Anal. 14, 653–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gray, A., Willmore, T.J.: Mean-value theorems for Riemannian manifolds. Proc. R. Soc. Edinb. 92A, 343–364 (1982)

    Article  MathSciNet  Google Scholar 

  25. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  26. Harish-Chandra: Invariant eigendistributions on a semi-simple Lie group. Trans. Am. Math. Soc. 119, 457–508 (1965)

    Google Scholar 

  27. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  28. Helgason, S.: Groups and Geometric Analysis. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  29. Helgason, S.: Geometric Analysis on Symmetric Spaces, 2nd edn. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  30. Kashiwara, M., Vergne, M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Invent. Math. 47, 249–272 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2. Interscience Publishers, London (1969)

    MATH  Google Scholar 

  32. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003); arXiv:math.QA/9709040 (1997)

    Google Scholar 

  33. Koornwinder, T.: A new proof of a Paley-Wiener type theorem for the Jacobi transform. Arkiv för Mat. 13, 145–159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Koornwinder, T.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R. (ed.) Special Functions: Group Theoretical Aspects and Applications. D. Reidel, Amsterdam (1984)

    Google Scholar 

  35. Koornwinder, T.: Invariant differential operators on nonreductive homogeneous spaces. arXiv:math/0008116 (2000)

    Google Scholar 

  36. Lichnerowicz, A.: Opérateurs différentiels invariants sur un espace homogène. Ann. Sci. École Norm. Sup. 81, 341–385 (1964)

    MathSciNet  MATH  Google Scholar 

  37. Loos, O.: Symmetric Spaces, vol. 1. Benjamin, New York (1969)

    MATH  Google Scholar 

  38. Minemura, K.: Invariant differential operators and spherical sections on a homogeneous vector bundle. Tokyo J. Math. 15, 231–245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Orloff, J.: Invariant Radon transforms on a symmetric space. Trans. Am. Math. Soc. 318, 581–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Raïs, M.: Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie nilpotent. C. R. Acad. Sci. Paris Série A 273, 495–498 (1971)

    MATH  Google Scholar 

  41. Rossi, C.: On the compatibility between cup products, the Alekseev-Torossian connection and the Kashiwara-Vergne conjecture. C. R. Acad. Sci. Paris Série I 350, 823–826, 871–874 (2012); arXiv:1205.7029v3 (2012)

    Google Scholar 

  42. Rouvière, F.: Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre sl(2). C. R. Acad. Sci. Paris Série I 292, 657–660 (1981)

    MATH  Google Scholar 

  43. Rouvière, F.: Espaces symétriques et méthode de Kashiwara-Vergne. Ann. Sci. École Norm. Sup. 19, 553–581 (1986)

    MATH  Google Scholar 

  44. Rouvière, F.: Invariant analysis and contractions of symmetric spaces I. Compositio Math. 73, 241–270 (1990)

    MathSciNet  MATH  Google Scholar 

  45. Rouvière, F.: Invariant analysis and contractions of symmetric spaces II. Compositio Math. 80, 111–136 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Rouvière, F.: Une propriété de symétrie des espaces symétriques. C. R. Acad. Sci. Paris Série I 313, 5–8 (1991)

    MATH  Google Scholar 

  47. Rouvière, F.: Fibrés en droites sur un espace symétrique et analyse invariante. J. Funct. Anal. 124, 263–291 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rouvière, F.: “Trivialité” du problème de Kashiwara-Vergne pour les algèbres de Lie résolubles. C. R. Acad. Sci. Paris Série I 348, 739–742 (2010)

    Article  MATH  Google Scholar 

  49. Rouvière, F.: Mean value theorems on symmetric spaces, Contemp. Math. 598, 209–219 (2013)

    Article  Google Scholar 

  50. Shimura, G.: Invariant differential operators on hermitian symmetric spaces. Ann. Math. 132, 237–272 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. Thompson, R.C.: Proof of a conjectured exponential formula. Linear Multilinear Algebra 19, 187–197 (1986)

    Article  MATH  Google Scholar 

  52. Torossian, C.: Opérateurs différentiels invariants sur les espaces symétriques, II: L’homomorphisme de Harish-Chandra généralisé. J. Funct. Anal. 117, 174–214 (1993)

    MathSciNet  MATH  Google Scholar 

  53. Torossian, C.: L’homomorphisme de Harish-Chandra pour les paires symétriques orthogonales et parties radiales des opérateurs différentiels invariants sur les espaces symétriques. Bull. Soc. Math. France 126, 295–354 (1998)

    MathSciNet  MATH  Google Scholar 

  54. Torossian, C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12, 597–616 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Torossian, C.: Méthode de Kashiwara-Vergne-Rouvière pour certains espaces symétriques. In: Non-commutative Harmonic Analysis. Progress in Mathematics, vol. 220, pp. 459–486. Birkhaüser, Boston (2004); arXiv:math.QA/0202217 (2002)

    Google Scholar 

  56. Torossian, C.: Paires symétriques orthogonales et isomorphisme de Rouvière. J. Lie Theory 15, 79–87 (2005)

    MathSciNet  MATH  Google Scholar 

  57. Torossian, C.: La conjecture de Kashiwara-Vergne [d’après Alekseev et Meinrenken], Séminaire Bourbaki n 980. Astérisque 317, 441–465 (2008)

    MathSciNet  Google Scholar 

  58. Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  59. Vergne, M.: Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff. C. R. Acad. Sci. Paris Série I 329, 767–772 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wallach, N.: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

  61. Wolf, J.A.: Spaces of Constant Curvature, 3rd edn. Publish or Perish, Boston (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rouvière, F. (2014). e-Functions and the Campbell-Hausdorff Formula. In: Symmetric Spaces and the Kashiwara-Vergne Method. Lecture Notes in Mathematics, vol 2115. Springer, Cham. https://doi.org/10.1007/978-3-319-09773-2_4

Download citation

Publish with us

Policies and ethics