Advertisement

König Graphs for 4-Paths

  • Dmitry MokeevEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 104)

Abstract

We give characterization of the graphs, whose each induced subgraph has the property: the maximum number of induced 4-paths is equal to the minimum cardinality of the set of vertices such as every induced 4-path contains at least one of them.

References

  1. 1.
    Alekseev, V.E., Mokeev, D.B.: König graphs with respect to 3-paths. Diskretnyi Analiz i Issledovanie Operatsiy 19, 3–14 (2012)MathSciNetGoogle Scholar
  2. 2.
    Deming, R.W.: Independence numbers of graphs — an extension of the König-Egervary theorem. Discrete Math. 27, 23–33 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ding, G., Xu, Z., Zang, W.: Packing cycles in graphs II. J. Comb. Theory. Ser. B. 87, 244–253 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hell, P.: Graph packing. Electron. Notes Discrete Math. 5, 170–173 (2000)CrossRefGoogle Scholar
  6. 6.
    Lovasz, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó, Budapest (1986)zbMATHGoogle Scholar
  7. 7.
    Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.R.: The complexity of konig subgraph problems and above-guarantee vertex cover. Algorithmica 61, 857–881 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yuster, R.: Combinatorial and computational aspects of graph packing and graph decomposition. Comput. Sci. Rev. 1, 12–26 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory of Algorithms and Technologies for Networks AnalysisNational Research University Higher School of EconomicsN.NovgorodRussia

Personalised recommendations