Using Mathematical Programming to Refine Heuristic Solutions for Network Clustering

  • Sonia CafieriEmail author
  • Pierre Hansen
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 104)


We propose mathematical programming-based approaches to refine graph clustering solutions computed by heuristics. Clustering partitions are refined by applying cluster splitting and a combination of merging and splitting actions. A refinement scheme based on iteratively fixing and releasing integer variables of a mixed-integer quadratic optimization formulation appears to be particularly efficient. Computational experiments show the effectiveness and efficiency of the proposed approaches.



The first author has been supported by French National Research Agency (ANR) through grant ANR 12-JS02-009-01 “ATOMIC.”


  1. 1.
    Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Liberti, L., Perron, S.: Column generation algorithms for exact modularity maximization in networks. Phys. Rev. E 82(4), 046,112 (2010)CrossRefGoogle Scholar
  3. 3.
    Aloise, D., Caporossi, G., Hansen, P., Liberti, L., Perron, S., Ruiz, M.: Graph partitioning and graph clustering. In: Proceedings of the 10th DIMACS implementation challenge workshop, Atlanta, GA, USA, 2012, Contemporary Mathematics, 588, pp. 113–127. American Mathematical Society (AMS), Oxford (2013)Google Scholar
  4. 4.
    Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008 (2008)Google Scholar
  5. 5.
    Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting complex network modularity by dynamical clustering. Phys. Rev. E 75, 045,102 (2007)CrossRefGoogle Scholar
  6. 6.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowledge Data Eng. 20(2), 172–188 (2008)CrossRefGoogle Scholar
  7. 7.
    Cafieri, S., Costa, A., Hansen, P.: Reformulation of a model for hierarchical divisive graph modularity maximization. Ann. Oper. Res. (2012). DOI 10.1007/s10479-012-1286-z (in press)Google Scholar
  8. 8.
    Cafieri, S., Hansen, P., Liberti, L.: Loops and multiple edges in modularity maximization of networks. Phys. Rev. E 81(4), 046,102 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cafieri, S., Hansen, P., Liberti, L.: Locally optimal heuristic for modularity maximization of networks. Phys. Rev. E 83(5), 056,105 (2011)CrossRefGoogle Scholar
  10. 10.
    Cafieri, S., Hansen, P., Liberti, L.: Improving heuristics for network modularity maximization using an exact algorithm. Discrete Appl. Math. 163(1), 65–72 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Clauset, A., Newman, M., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066,111 (2004)CrossRefGoogle Scholar
  12. 12.
    Dartnell, L., Simeonidis, E., Hubank, M., Tsoka, S., Bogle, I., Papageorgiou, L.: Self-similar community structure in a network of human interactions. FEBS Lett. 579, 3037–3042 (2005)CrossRefGoogle Scholar
  13. 13.
    Djidjev, H.: A scalable multilevel algorithm for graph clustering and community structure detection. Lect. Note Comput. Sci. 4936, 117–128 (2008)CrossRefGoogle Scholar
  14. 14.
    Duch, J., Arenas, A.: Community identification using extremal optimization. Phys. Rev. E 72(2), 027,104 (2005)CrossRefGoogle Scholar
  15. 15.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)CrossRefGoogle Scholar
  17. 17.
    Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Programm. 45, 59–96 (1989)CrossRefzbMATHGoogle Scholar
  19. 19.
    Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Programm. 47, 367–387 (1990)CrossRefzbMATHGoogle Scholar
  20. 20.
    Guimerà, R., Amaral, A.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)CrossRefGoogle Scholar
  21. 21.
    Guimerà, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065,103 (2003)CrossRefGoogle Scholar
  22. 22.
    IBM: ILOG CPLEX 12.2 User’s Manual. IBM (2010)Google Scholar
  23. 23.
    Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading (1993)Google Scholar
  24. 24.
    Krebs, V.: (unpublished)
  25. 25.
  26. 26.
    Lehmann, S., Hansen, L.: Deterministic modularity optimization. Eur. Phys. J. B 60, 83–88 (2007)CrossRefGoogle Scholar
  27. 27.
    Lusseau, D., Schneider, K., Boisseau, O., Haase, P., Slooten, E., Dawson, S.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. can geographic isolation explain this unique trait? Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)Google Scholar
  28. 28.
    Massen, C., Doye, J.: Identifying communities within energy landscapes. Phys. Rev. E 71, 046,101 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Medus, A., Acuna, G., Dorso, C.: Detection of community structures in networks via global optimization. Phys. A 358, 593–604 (2005)CrossRefGoogle Scholar
  30. 30.
    Mei, J., He, S., Shi, G., Wang, Z., Li, W.: Revealing network communities through modularity maximization by a contraction-dilation method. New J. Phys. 11, 043,025 (2009)CrossRefGoogle Scholar
  31. 31.
    Newman, M.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  32. 32.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026,113 (2004)Google Scholar
  33. 33.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  34. 34.
    Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. Lect. Note Comput. Sci. 5526, 257–268 (2009)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv:0711.0491 (2007)Google Scholar
  37. 37.
    Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 409–410 (1998)CrossRefGoogle Scholar
  38. 38.
    Xu, G., Bennett, Papageorgiou, L., Tsoka, S.: Module detection in complex networks using integer optimisation. Algorithm Mol. Biol. 5(36) (2010). DOI:10.1186/1748-7188-5-36Google Scholar
  39. 39.
    Xu, G., Tsoka, S., Papageorgiou, L.: Finding community structures in complex networks using mixed integer optimization. Eur. Phys. J. B 60, 231–239 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.ENACMAIAAToulouseFrance
  2. 2.Université de Toulouse, IMTToulouseFrance
  3. 3.GERADHEC MontréalCanada

Personalised recommendations