Skip to main content

Using Mathematical Programming to Refine Heuristic Solutions for Network Clustering

  • Conference paper
  • First Online:
Models, Algorithms and Technologies for Network Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 104))

  • 854 Accesses

Abstract

We propose mathematical programming-based approaches to refine graph clustering solutions computed by heuristics. Clustering partitions are refined by applying cluster splitting and a combination of merging and splitting actions. A refinement scheme based on iteratively fixing and releasing integer variables of a mixed-integer quadratic optimization formulation appears to be particularly efficient. Computational experiments show the effectiveness and efficiency of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Liberti, L., Perron, S.: Column generation algorithms for exact modularity maximization in networks. Phys. Rev. E 82(4), 046,112 (2010)

    Article  Google Scholar 

  3. Aloise, D., Caporossi, G., Hansen, P., Liberti, L., Perron, S., Ruiz, M.: Graph partitioning and graph clustering. In: Proceedings of the 10th DIMACS implementation challenge workshop, Atlanta, GA, USA, 2012, Contemporary Mathematics, 588, pp. 113–127. American Mathematical Society (AMS), Oxford (2013)

    Google Scholar 

  4. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008 (2008)

    Google Scholar 

  5. Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting complex network modularity by dynamical clustering. Phys. Rev. E 75, 045,102 (2007)

    Article  Google Scholar 

  6. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowledge Data Eng. 20(2), 172–188 (2008)

    Article  Google Scholar 

  7. Cafieri, S., Costa, A., Hansen, P.: Reformulation of a model for hierarchical divisive graph modularity maximization. Ann. Oper. Res. (2012). DOI 10.1007/s10479-012-1286-z (in press)

    Google Scholar 

  8. Cafieri, S., Hansen, P., Liberti, L.: Loops and multiple edges in modularity maximization of networks. Phys. Rev. E 81(4), 046,102 (2010)

    Article  MathSciNet  Google Scholar 

  9. Cafieri, S., Hansen, P., Liberti, L.: Locally optimal heuristic for modularity maximization of networks. Phys. Rev. E 83(5), 056,105 (2011)

    Article  Google Scholar 

  10. Cafieri, S., Hansen, P., Liberti, L.: Improving heuristics for network modularity maximization using an exact algorithm. Discrete Appl. Math. 163(1), 65–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066,111 (2004)

    Article  Google Scholar 

  12. Dartnell, L., Simeonidis, E., Hubank, M., Tsoka, S., Bogle, I., Papageorgiou, L.: Self-similar community structure in a network of human interactions. FEBS Lett. 579, 3037–3042 (2005)

    Article  Google Scholar 

  13. Djidjev, H.: A scalable multilevel algorithm for graph clustering and community structure detection. Lect. Note Comput. Sci. 4936, 117–128 (2008)

    Article  Google Scholar 

  14. Duch, J., Arenas, A.: Community identification using extremal optimization. Phys. Rev. E 72(2), 027,104 (2005)

    Article  Google Scholar 

  15. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)

    Article  Google Scholar 

  17. Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Programm. 45, 59–96 (1989)

    Article  MATH  Google Scholar 

  19. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Programm. 47, 367–387 (1990)

    Article  MATH  Google Scholar 

  20. Guimerà, R., Amaral, A.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  21. Guimerà, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065,103 (2003)

    Article  Google Scholar 

  22. IBM: ILOG CPLEX 12.2 User’s Manual. IBM (2010)

    Google Scholar 

  23. Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading (1993)

    Google Scholar 

  24. Krebs, V.: http://www.orgnet.com/ (unpublished)

  25. Lab, U.A.: http://www.weizmann.ac.il/mcb/UriAlon/

  26. Lehmann, S., Hansen, L.: Deterministic modularity optimization. Eur. Phys. J. B 60, 83–88 (2007)

    Article  Google Scholar 

  27. Lusseau, D., Schneider, K., Boisseau, O., Haase, P., Slooten, E., Dawson, S.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. can geographic isolation explain this unique trait? Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Google Scholar 

  28. Massen, C., Doye, J.: Identifying communities within energy landscapes. Phys. Rev. E 71, 046,101 (2005)

    Article  MathSciNet  Google Scholar 

  29. Medus, A., Acuna, G., Dorso, C.: Detection of community structures in networks via global optimization. Phys. A 358, 593–604 (2005)

    Article  Google Scholar 

  30. Mei, J., He, S., Shi, G., Wang, Z., Li, W.: Revealing network communities through modularity maximization by a contraction-dilation method. New J. Phys. 11, 043,025 (2009)

    Article  Google Scholar 

  31. Newman, M.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  32. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026,113 (2004)

    Google Scholar 

  33. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  34. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. Lect. Note Comput. Sci. 5526, 257–268 (2009)

    Article  Google Scholar 

  35. http://vlado.fmf.uni-lj.si/pub/networks/data/

  36. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv:0711.0491 (2007)

    Google Scholar 

  37. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 409–410 (1998)

    Article  Google Scholar 

  38. Xu, G., Bennett, Papageorgiou, L., Tsoka, S.: Module detection in complex networks using integer optimisation. Algorithm Mol. Biol. 5(36) (2010). DOI:10.1186/1748-7188-5-36

    Google Scholar 

  39. Xu, G., Tsoka, S., Papageorgiou, L.: Finding community structures in complex networks using mixed integer optimization. Eur. Phys. J. B 60, 231–239 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been supported by French National Research Agency (ANR) through grant ANR 12-JS02-009-01 “ATOMIC.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Cafieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cafieri, S., Hansen, P. (2014). Using Mathematical Programming to Refine Heuristic Solutions for Network Clustering. In: Batsyn, M., Kalyagin, V., Pardalos, P. (eds) Models, Algorithms and Technologies for Network Analysis. Springer Proceedings in Mathematics & Statistics, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-09758-9_2

Download citation

Publish with us

Policies and ethics