Advertisement

Possible Ways of Applying Citations Network Analysis to a Scientific Writing Assistant

  • Alexander PorshnevEmail author
  • Maxim Kazakov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 104)

Abstract

Development of linguistic technologies gave rise to a new type of tools for academic writing, which use natural language processing and heuristics to help authors write scientific papers. In our contribution we present a new function “advise a paper to read” and the way it could be implemented. We discuss a possibility of using different centrality metrics and test their application in 50 cases created from 50 top cited articles of the Engineering domain. For each case we created a citation network graph based on the results of a search query in the Web of Knowledge by Thomson Reuters, using adjusted authors key phrases, and compared the results of applying the centrality metrics with the actual reference list presented in each article.

Keywords

Centrality Metrics Betweenness Centrality Search Query Citation Network Closeness Centrality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anthonisse, J.M.: The rush in a directed graph. Stichting Mathematisch Centrum. Mathematische Besliskunde (BN 9/71), 1–10 (1971). URL http://www.narcis.nl/publication/RecordID/oai:cwi.nl:9791
  2. 2.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). URL http://www.sciencemag.org/content/286/5439/509.short
  3. 3.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN Syst. 30(1), 107–117 (1998). URL http://www.sciencedirect.com/science/article/pii/S016975529800110X
  4. 4.
    Chen, C.: CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inform. Sci. Tech. 57(3), 359–377 (2006). DOI 10.1002/asi.20317. URL http://doi.wiley.com/10.1002/asi.20317
  5. 5.
    Chen, M.H., Huang, S.T., Hsieh, H.T., Kao, T.H., Chang, J.S.: FLOW: a first-language-oriented writing assistant system. In: Proceedings of the ACL 2012 System Demonstrations, ACL ’12, p. 157–162. Association for Computational Linguistics, Stroudsburg, PA, USA (2012). URL http://dl.acm.org/citation.cfm?id=2390470.2390497
  6. 6.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 1(3), 215–239 (1979). URL http://www.sciencedirect.com/science/article/pii/0378873378900217
  7. 7.
    Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Networks 17(1), 57–63 (1995). URL http://www.sciencedirect.com/science/article/pii/0378873394002489
  8. 8.
    Herrera, F., Martínez, L.: A 2-tuple Fuzzy Linguistic Representation Model for Computing with Words. IEEE Transactions on Fuzzy Systems 8(6), 746–752 (2000). doi:10.1109/91.890332.CrossRefGoogle Scholar
  9. 9.
    Journal papers with more than 55 citations at web of science (last update: 21/10/2013) (2013). URL http://sci2s.ugr.es/highlyCitedPapers/index.php#top1
  10. 10.
    Joseph, M.T., Radev, D.R.: Citation analysis, centrality, and the ACL anthology. Ann. Arbor 1001, 48,109–1092 (2007). URL http://clair.si.umich.edu/~radev/papers/112.pdf
  11. 11.
    Kinnunen, T., Leisma, H., Machunik, M., Kakkonen, T., Lebrun, J.L.: SWAN - scientific writing AssistaNt: a tool for helping scholars to write reader-friendly manuscripts. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, EACL ’12, p. 20–24. Association for Computational Linguistics, Stroudsburg, PA, USA (2012). URL http://dl.acm.org/citation.cfm?id=2380921.2380926
  12. 12.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999). URL http://dl.acm.org/citation.cfm?id=324140
  13. 13.
    Ma, N., Guan, J., Zhao, Y.: Bringing PageRank to the citation analysis. Inform. Proc. Manag. 44(2), 800–810 (2008). DOI 10.1016/j.ipm.2007. 06.006. URL http://linkinghub.elsevier.com/retrieve/pii/S0306457307001203
  14. 14.
    Mihalcea, R.: Graph-based ranking algorithms for sentence extraction, applied to text summarization. In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions, p. 20 (2004). URL http://dl.acm.org/citation.cfm?id=1219064
  15. 15.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966). URL http://www.springerlink.com/index/u57264845r413784.pdf
  16. 16.
    Sci2 team: Science of science (sci2) tool (2009). URL http://sci2.cns.iu.edu.
  17. 17.
    Shimbel, A.: Structural parameters of communication networks. Bull. Math. Biophys. 15(4), 501–507 (1953). URL http://link.springer.com/article/10.1007/BF02476438

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsNizhny NovgorodRussian Federation

Personalised recommendations