Skip to main content

Fabrication of Polymer and Composite Scaffolds Using Electrospinning Techniques

  • Chapter
  • First Online:
Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 861 Accesses

Abstract

This chapter reports the electrospinning technique for the formation of nano and microfibers. Due to the ability to fabricate fibrous scaffolds with micro and nano-scale properties, electrospinning technique has received much interest. Poly(caprolactone) (PCL) fibrous scaffolds with micro and nano-scale fibers and surface-porous fibers have not been explicitly investigated. In this study, the results of modulating the factors on processing route on nanofibrous scaffold morphology were investigated. 10 and 13 % w/v of PCL/dichloromethane (DCM) or chloroform was used at different flow rate and applied voltage. The result shows that 13 % w/v of PCL/chloroform produced better fibers. The fibrous scaffolds had two different ranges of fiber diameters. Average fiber diameter in the higher range was 4.52 μm while average fiber diameter in the lower range was 440 nm. In vitro degradation study suggested slow degradability of PCL electrospun fibers. This chapter also reports the fabrication of hydroxyapatite/PCL microfibers and their characteristics.

Mohd Izzat Hassan, Mim Mim Lim and Naznin Sultana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amna, T., Barakat, N. A. M., Hassan, M. S., Khil, M.-S., & Kim, H. Y. (2013). Camptothecin loaded poly(ε-caprolactone)nanofibers via one-step electrospinning and their cytotoxicity impact. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 1–8.

    Article  Google Scholar 

  • Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70, 703–718.

    Google Scholar 

  • Beachley, V., & Wen, X. (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29, 663–668.

    Article  Google Scholar 

  • Bosworth, L. A., & Downes, S. (2012). Acetone, a sustainable solvent for electrospinning poly(ε-caprolactone) fibres: Effect of varying parameters and solution concentrations on fibre diameter. Journal of Polymers and the Environment, 20, 879–886.

    Article  Google Scholar 

  • Bulasara, I. K., Uppaluri, R., & Purkait, M. K. (2011). Manufacture of nickel-ceramic composite membranes in agitated electroless plating baths. Materials and Manufacturing Processes, 26, 862–867.

    Article  Google Scholar 

  • Chen, Z., Cao, L., Wang, L., Zhu, H., & Jiang, H. (2013). Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin. Journal of Applied Polymer Science, 127, 4225–4232.

    Article  Google Scholar 

  • Croisier, F., Duwez, A. S., Jérôme, C., Léonard, A. F., Vanderwerf, K. O., Dijkstra, P. J., et al. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 8, 218–224.

    Article  Google Scholar 

  • Deitzel, J. M., Jkleinmeyer, J., Harris, D., & Tan, N. C. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261–272.

    Article  Google Scholar 

  • Doshi, J., & Reneker, D. H. (1995). Electrospinning process and application of electrospun fibers. Journal of Electrostatics, 35, 151–160.

    Article  Google Scholar 

  • Gholipour, A., Bahrami, S. H., & Nouri, M. (2009). Chitosan-poly (vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. e-Polymers, 9, 1580–1591.

    Article  Google Scholar 

  • Hassan, M. I., Mokhtar, M., Sultana, N., & Khan, T. H. (2012). Production of hydroxyapatite (HA) nanoparticle and HA/PCL tissue engineering scaffolds for bone tissue engineering. In IEEE (pp. 239–242).

    Google Scholar 

  • Hassan, M. I., Sun, T., & Sultana, N. (2014). Fabrication of nano hydroxyapatite/poly(caprolactone) composite microfibers using electrospinning technique for tissue engineering applications. Journal of Nanomaterials, 2014, 1–7.

    Google Scholar 

  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223–2253.

    Google Scholar 

  • Jaiswal, A. K., Chhabra, H., Kadam, S. S., Londhe, K., Soni, V. P., & Bellare, J. R. (2013). Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: A comparative study. Materials Science & Engineering C, Materials for Biological Applications, 33, 2926–2936.

    Article  Google Scholar 

  • Ji, C., Annabi, N., Hosseinkhani, M., Sivaloganathan, S., & Dehghani, F. (2012). Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomaterialia, 8, 570–578.

    Article  Google Scholar 

  • Kanani, A. G., & Bahrami, S. H. (2011). Effect of changing solvents on poly(ε-caprolactone) nanofibrous webs morphology. Journal of Nanomaterials, 2011, 31.

    Google Scholar 

  • Khil, M.-S., Bhattarai, S. R., Kim, H.-Y., Kim, S.-Z., & Lee, K.-H. (2005). Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B, 117–124.

    Google Scholar 

  • Kreuter, J. (1994). Drug targeting with nanoparticles. European Journal of Drug Metabolism and Pharmacokinetics, 19(3), 253–256.

    Google Scholar 

  • Meng, Z. X., Zheng, W., Li, L., & Zheng, Y. F. (2010). Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Materials Science and Engineering: C, 30, 1014–1021.

    Article  Google Scholar 

  • Moghe, A. K., Hufenus, R., Hudson, S. M., & Gupta, B. S. (2009). Effect of the addition of a fugitive salt on electrospinnability of poly(ɛ-caprolactone). Polymer, 50, 3311–3318.

    Article  Google Scholar 

  • Mou, Z.-L., Duan, L.-M., & Zhang, Z.-Q. (2013). Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Materials Letters, 105, 189–191.

    Google Scholar 

  • Nguyen, T.-H., Bao, T. Q., Park, I., & Lee, B.-T. (2013). A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Journal of Biomaterials Applications, 28, 514–528.

    Google Scholar 

  • Pant, H. R., Park, C. H., Tijing, L. D., Amarjargai, A., Lee, D.-H., & Kim, S. K. (2012). Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 407, 121–125.

    Article  Google Scholar 

  • Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 7, 2796–2805.

    Article  Google Scholar 

  • Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., et al. (2008). Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering Part A, 14, 1787–1797.

    Article  Google Scholar 

  • Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7, 216–223.

    Article  Google Scholar 

  • Roozbahani, F., Sultana, N., Ismail, A. F., & Nouparvar, H. (2013). Effects of chitosan alkali pretreatment on the preparation of electrospun PCL/chitosan blend nanofibrous scaffolds for tissue engineering application. Journal of Nanomaterials, 2013, 6.

    Article  Google Scholar 

  • Sahoo, N. G., Jung, Y. C., & Cho, J. W. (2007). Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Materials and Manufacturing Processes, 22, 419–423.

    Article  Google Scholar 

  • Schueren, L. V. D., Schoenmaker, B. D., Kalaoglu, O. I., & Clerck, K. D. (2011). An alternative solvent system for steady state electro spinning of polycaprolactone. European Polymer Journal, 47, 1256–1263.

    Article  Google Scholar 

  • Serra, T., Planell, J. A., & Navarro, M. (2013). High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia, 9, 5521–5530.

    Article  Google Scholar 

  • Shalumon, K. T., Anulekha, K. H., Chennazhi, K. P., Tamura, H., Nair, S. V., & Jayakumar, R. (2011). Fabrication of chitosan/poly (caprolactone) nanofibrous scaffold for bone and skin tissue engineering. International Journal of Biological Macromolecules, 48, 571–576.

    Article  Google Scholar 

  • Sill, T. J., & Recum, H. A. V. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29, 1989–2006.

    Article  Google Scholar 

  • Simşek, M., Capkın, M., Karakeçili, A., & Gümüşderelioğlu, M. (2012). Chitosan and polycaprolactone membranes patterned via electrospinning: Effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior. Journal of Biomedical Materials Research Part A, 100A, 3332–3343.

    Google Scholar 

  • Sultana, N., & Khan, T. H. (2013a). Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering. Journal of Bionanoscience, 7, 169–173.

    Article  Google Scholar 

  • Sultana, N., & Khan, T. H. (2013b). Water absorption and diffusion characteristics of nanohydroxyapatite (nHA) and poly(hydroxybutyrate-co-hydroxyvalerate-) based composite tissue engineering scaffolds and nonporous thin films. Journal of Nanomaterials, 2013, 1.

    Google Scholar 

  • Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: Surface modification and in vitro biological evaluation. Biofabrication, 4, 015003.

    Google Scholar 

  • Sultana, N., Mokhtar, M., Hassan, M. I., Jin, R. M., Roozbahani, F., & Khan, T. H. (2014). Chitosan-based nanocomposite scaffolds for tissue engineering applications. Materials and Manufacturing Processes.

    Google Scholar 

  • Valle, L. J., Camps, R., Díaz, A., Franco, L., Rodríguez-Galán, A., & Puiggalí, J. (2011). Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. Journal of Polymer Research, 18, 1903–1917.

    Article  Google Scholar 

  • Zhou, W. Y., Wang, M., Cheung, W. L., Guo, B. C., & Jia, D. C. (2008). Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. Journal of Materials Science: Materials in Medicine, 19, 103–110.

    Google Scholar 

  • Zoppe, J. O., Peresin, M. S., Habibi, Y., Venditti, R. A., & Rojas, O. J. (2009). Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Applied Materials & Interfaces, 1, 1996–2004.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM) for the lab facilities. This work was supported by research grants FRGS (vot no: 4F126), GUP Tier 1 (03 H13, 05H07). Authors also acknowledge the support provided by MOHE, RMC and UTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naznin Sultana .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Sultana, N., Hassan, M.I., Lim, M.M. (2015). Fabrication of Polymer and Composite Scaffolds Using Electrospinning Techniques. In: Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-09755-8_3

Download citation

Publish with us

Policies and ethics