Advertisement

Fabrication of Polymer and Composite Scaffolds Using Electrospinning Techniques

Chapter
  • 762 Downloads
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

This chapter reports the electrospinning technique for the formation of nano and microfibers. Due to the ability to fabricate fibrous scaffolds with micro and nano-scale properties, electrospinning technique has received much interest. Poly(caprolactone) (PCL) fibrous scaffolds with micro and nano-scale fibers and surface-porous fibers have not been explicitly investigated. In this study, the results of modulating the factors on processing route on nanofibrous scaffold morphology were investigated. 10 and 13 % w/v of PCL/dichloromethane (DCM) or chloroform was used at different flow rate and applied voltage. The result shows that 13 % w/v of PCL/chloroform produced better fibers. The fibrous scaffolds had two different ranges of fiber diameters. Average fiber diameter in the higher range was 4.52 μm while average fiber diameter in the lower range was 440 nm. In vitro degradation study suggested slow degradability of PCL electrospun fibers. This chapter also reports the fabrication of hydroxyapatite/PCL microfibers and their characteristics.

Keywords

Electrospinning Processing parameters PCL polymers Hydroxyapatite 

Notes

Acknowledgment

The authors would like to acknowledge the Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM) for the lab facilities. This work was supported by research grants FRGS (vot no: 4F126), GUP Tier 1 (03 H13, 05H07). Authors also acknowledge the support provided by MOHE, RMC and UTM.

References

  1. Amna, T., Barakat, N. A. M., Hassan, M. S., Khil, M.-S., & Kim, H. Y. (2013). Camptothecin loaded poly(ε-caprolactone)nanofibers via one-step electrospinning and their cytotoxicity impact. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 1–8.CrossRefGoogle Scholar
  2. Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70, 703–718.Google Scholar
  3. Beachley, V., & Wen, X. (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29, 663–668.CrossRefGoogle Scholar
  4. Bosworth, L. A., & Downes, S. (2012). Acetone, a sustainable solvent for electrospinning poly(ε-caprolactone) fibres: Effect of varying parameters and solution concentrations on fibre diameter. Journal of Polymers and the Environment, 20, 879–886.CrossRefGoogle Scholar
  5. Bulasara, I. K., Uppaluri, R., & Purkait, M. K. (2011). Manufacture of nickel-ceramic composite membranes in agitated electroless plating baths. Materials and Manufacturing Processes, 26, 862–867.CrossRefGoogle Scholar
  6. Chen, Z., Cao, L., Wang, L., Zhu, H., & Jiang, H. (2013). Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin. Journal of Applied Polymer Science, 127, 4225–4232.CrossRefGoogle Scholar
  7. Croisier, F., Duwez, A. S., Jérôme, C., Léonard, A. F., Vanderwerf, K. O., Dijkstra, P. J., et al. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 8, 218–224.CrossRefGoogle Scholar
  8. Deitzel, J. M., Jkleinmeyer, J., Harris, D., & Tan, N. C. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261–272.CrossRefGoogle Scholar
  9. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and application of electrospun fibers. Journal of Electrostatics, 35, 151–160.CrossRefGoogle Scholar
  10. Gholipour, A., Bahrami, S. H., & Nouri, M. (2009). Chitosan-poly (vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. e-Polymers, 9, 1580–1591.CrossRefGoogle Scholar
  11. Hassan, M. I., Mokhtar, M., Sultana, N., & Khan, T. H. (2012). Production of hydroxyapatite (HA) nanoparticle and HA/PCL tissue engineering scaffolds for bone tissue engineering. In IEEE (pp. 239–242).Google Scholar
  12. Hassan, M. I., Sun, T., & Sultana, N. (2014). Fabrication of nano hydroxyapatite/poly(caprolactone) composite microfibers using electrospinning technique for tissue engineering applications. Journal of Nanomaterials, 2014, 1–7. Google Scholar
  13. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223–2253.Google Scholar
  14. Jaiswal, A. K., Chhabra, H., Kadam, S. S., Londhe, K., Soni, V. P., & Bellare, J. R. (2013). Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: A comparative study. Materials Science & Engineering C, Materials for Biological Applications, 33, 2926–2936.CrossRefGoogle Scholar
  15. Ji, C., Annabi, N., Hosseinkhani, M., Sivaloganathan, S., & Dehghani, F. (2012). Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomaterialia, 8, 570–578.CrossRefGoogle Scholar
  16. Kanani, A. G., & Bahrami, S. H. (2011). Effect of changing solvents on poly(ε-caprolactone) nanofibrous webs morphology. Journal of Nanomaterials, 2011, 31.Google Scholar
  17. Khil, M.-S., Bhattarai, S. R., Kim, H.-Y., Kim, S.-Z., & Lee, K.-H. (2005). Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B, 117–124.Google Scholar
  18. Kreuter, J. (1994). Drug targeting with nanoparticles. European Journal of Drug Metabolism and Pharmacokinetics, 19(3), 253–256.Google Scholar
  19. Meng, Z. X., Zheng, W., Li, L., & Zheng, Y. F. (2010). Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Materials Science and Engineering: C, 30, 1014–1021.CrossRefGoogle Scholar
  20. Moghe, A. K., Hufenus, R., Hudson, S. M., & Gupta, B. S. (2009). Effect of the addition of a fugitive salt on electrospinnability of poly(ɛ-caprolactone). Polymer, 50, 3311–3318.CrossRefGoogle Scholar
  21. Mou, Z.-L., Duan, L.-M., & Zhang, Z.-Q. (2013). Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Materials Letters, 105, 189–191.Google Scholar
  22. Nguyen, T.-H., Bao, T. Q., Park, I., & Lee, B.-T. (2013). A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Journal of Biomaterials Applications, 28, 514–528.Google Scholar
  23. Pant, H. R., Park, C. H., Tijing, L. D., Amarjargai, A., Lee, D.-H., & Kim, S. K. (2012). Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 407, 121–125.CrossRefGoogle Scholar
  24. Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 7, 2796–2805.CrossRefGoogle Scholar
  25. Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., et al. (2008). Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering Part A, 14, 1787–1797.CrossRefGoogle Scholar
  26. Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7, 216–223.CrossRefGoogle Scholar
  27. Roozbahani, F., Sultana, N., Ismail, A. F., & Nouparvar, H. (2013). Effects of chitosan alkali pretreatment on the preparation of electrospun PCL/chitosan blend nanofibrous scaffolds for tissue engineering application. Journal of Nanomaterials, 2013, 6.CrossRefGoogle Scholar
  28. Sahoo, N. G., Jung, Y. C., & Cho, J. W. (2007). Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Materials and Manufacturing Processes, 22, 419–423.CrossRefGoogle Scholar
  29. Schueren, L. V. D., Schoenmaker, B. D., Kalaoglu, O. I., & Clerck, K. D. (2011). An alternative solvent system for steady state electro spinning of polycaprolactone. European Polymer Journal, 47, 1256–1263.CrossRefGoogle Scholar
  30. Serra, T., Planell, J. A., & Navarro, M. (2013). High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia, 9, 5521–5530.CrossRefGoogle Scholar
  31. Shalumon, K. T., Anulekha, K. H., Chennazhi, K. P., Tamura, H., Nair, S. V., & Jayakumar, R. (2011). Fabrication of chitosan/poly (caprolactone) nanofibrous scaffold for bone and skin tissue engineering. International Journal of Biological Macromolecules, 48, 571–576.CrossRefGoogle Scholar
  32. Sill, T. J., & Recum, H. A. V. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29, 1989–2006.CrossRefGoogle Scholar
  33. Simşek, M., Capkın, M., Karakeçili, A., & Gümüşderelioğlu, M. (2012). Chitosan and polycaprolactone membranes patterned via electrospinning: Effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior. Journal of Biomedical Materials Research Part A, 100A, 3332–3343.Google Scholar
  34. Sultana, N., & Khan, T. H. (2013a). Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering. Journal of Bionanoscience, 7, 169–173.CrossRefGoogle Scholar
  35. Sultana, N., & Khan, T. H. (2013b). Water absorption and diffusion characteristics of nanohydroxyapatite (nHA) and poly(hydroxybutyrate-co-hydroxyvalerate-) based composite tissue engineering scaffolds and nonporous thin films. Journal of Nanomaterials, 2013, 1.Google Scholar
  36. Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: Surface modification and in vitro biological evaluation. Biofabrication, 4, 015003.Google Scholar
  37. Sultana, N., Mokhtar, M., Hassan, M. I., Jin, R. M., Roozbahani, F., & Khan, T. H. (2014). Chitosan-based nanocomposite scaffolds for tissue engineering applications. Materials and Manufacturing Processes.Google Scholar
  38. Valle, L. J., Camps, R., Díaz, A., Franco, L., Rodríguez-Galán, A., & Puiggalí, J. (2011). Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. Journal of Polymer Research, 18, 1903–1917.CrossRefGoogle Scholar
  39. Zhou, W. Y., Wang, M., Cheung, W. L., Guo, B. C., & Jia, D. C. (2008). Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. Journal of Materials Science: Materials in Medicine, 19, 103–110.Google Scholar
  40. Zoppe, J. O., Peresin, M. S., Habibi, Y., Venditti, R. A., & Rojas, O. J. (2009). Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Applied Materials & Interfaces, 1, 1996–2004.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Clinical Sciences, Faculty of Biosciences and Medical EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia

Personalised recommendations