Skip to main content

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Development of scaffolds in tissue engineering applications is growing in a fast pace. Scaffolds play a pivotal role in scaffold-based tissue engineering. The scaffolds must possess some important characteristics. Scaffolds should be biocompatible, should have appropriate porosity and porous microstructure and proper surface chemistry to allow cell attachment, proliferation and differentiation. Scaffolds should possess adequate mechanical properties and controlled biodegradability. There are many techniques available to fabricate scaffolds including freeze drying, electrospinning and rapid prototyping. Some of these techniques have gained much attention due to their versatility. This chapter points up the protocols for the fabrication and characterization of appropriate scaffolds for tissue engineering using biopolymers and composite biomaterials.

Mim Mim Lim and Naznin Sultana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annis, D., Bornat, A., Edwards, R., Higham, A., Loveday, B., & Wilson, J. (1978). An elastomeric vascular prosthesis. ASAIO Journal, 24, 209–214.

    Google Scholar 

  • Anton, F. (1939). Method and apparatus for spinning. US Patent 2,160,962.

    Google Scholar 

  • Baumgarten, P. K. (1971). Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36, 71–79.

    Article  Google Scholar 

  • Dalton, P. D., Lleixà Calvet, J., Mourran, A., Klee, D., & Möller, M. (2006). Melt electrospinning of poly-(ethylene glycol-block-ϵ-caprolactone). Biotechnology Journal, 1, 998–1006.

    Article  Google Scholar 

  • Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35, 151–160.

    Article  Google Scholar 

  • Fisher, A., De Cossart, L., How, T., & Annis, D. (1984). Long term in-vivo performance of an electrostatically-spun small bore arterial prosthesis: The contribution of mechanical compliance and anti-platelet therapy. Life Support Systems: The Journal of The European Society for Artificial Organs, 3, 462–465.

    Google Scholar 

  • Formhals, A. (1934). Process and apparatus for preparing artificial threads. US 1975504.

    Google Scholar 

  • Formhals, A. (1940). Artificial thread and method of producing same. US 187306.

    Google Scholar 

  • Gupta, P., & Wilkes, G. L. (2003). Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer, 44, 6353–6359.

    Article  Google Scholar 

  • Huang, Z. M., He, C. L., Yang, A., Zhang, Y., Han, X. J., Yin, J., et al. (2006). Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. Journal of Biomedical Materials Research, Part A, 77, 169–179.

    Article  Google Scholar 

  • Lam, C. X. F., Mo, X., Teoh, S.-H., & Hutmacher, D. (2002). Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 20, 49–56.

    Article  Google Scholar 

  • Lanza, R., Langer, R., & Vacanti, J. (2007). Principles of tissue engineering. London: Academic Press.

    Google Scholar 

  • Larrondo, L., & St John Manley, R. (1981). Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition, 19, 909–920.

    Google Scholar 

  • Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 16, 1151–1170.

    Article  Google Scholar 

  • Liu, X., & Ma, P. X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering, 32, 477–486.

    Article  Google Scholar 

  • Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M., & Ganan-Calvo, A. (2002). Micro/nano encapsulation via electrified coaxial liquid jets. Science, 295, 1695–1698.

    Article  Google Scholar 

  • Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7, 30–40.

    Article  Google Scholar 

  • Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35, 8456–8466.

    Article  Google Scholar 

  • Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7, 216.

    Article  Google Scholar 

  • Sencadas, V., Ribeiro, C., Nunes-Pereira, J., Correia, V., & Lanceros-Méndez, S. (2012). Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene fluoride–trifluoroethylene) membranes for biomedical applications. Applied Physics A, 109, 685–691.

    Article  Google Scholar 

  • Sill, T. J., & von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29, 1989–2006.

    Article  Google Scholar 

  • Stitzel, J., Liu, J., Lee, S. J., Komura, M., Berry, J., Soker, S., et al. (2006). Controlled fabrication of a biological vascular substitute. Biomaterials, 27, 1088–1094.

    Article  Google Scholar 

  • Tan, E., Ng, S., & Lim, C. (2005). Tensile testing of a single ultrafine polymeric fiber. Biomaterials, 26, 1453–1456.

    Article  Google Scholar 

  • Taylor, G. (1969). Electrically driven jets. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 313, 453–475.

    Google Scholar 

  • Whang, K., Thomas, C., Healy, K., & Nuber, G. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer, 36, 837–842.

    Article  Google Scholar 

  • Yu, D.-G., Zhu, L.-M., White, K., & Branford-White, C. (2009). Electrospun nanofiber-based drug delivery systems. Health (1949-4998), 1, 67–75.

    Google Scholar 

  • Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly (vinyl alcohol) mats. European Polymer Journal, 41, 423–432.

    Article  Google Scholar 

  • Zhang, Y. Z., Wang, X., Feng, Y., Li, J., Lim, C. T., & Ramakrishna, S. (2006). Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules, 7, 1049–1057.

    Article  Google Scholar 

  • Zhao, F., Yin, Y., Lu, W. W., Leong, J. C., Zhang, W., Zhang, J., et al. (2002). Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials, 23, 3227–3234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naznin Sultana .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Sultana, N., Hassan, M.I., Lim, M.M. (2015). Scaffold Fabrication Protocols. In: Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-09755-8_2

Download citation

Publish with us

Policies and ethics