Scaffolding Biomaterials

Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


The aim of tissue engineering is to develop cell, construct, and living system technologies to restore the structures and functions of damaged or degenerated tissues. Scaffolds are supporting materials used in tissue engineering applications to repair or restore damaged tissues. Biomaterials are used to fabricate scaffolds. There are different types of biomaterials including biopolymers, bioceramics and biodegradable metals. Biomaterials have to be biocompatible and non-toxic. To fabricate scaffold, appropriate biomaterial has to be chosen according to the desired characteristics and application of the scaffold. This chapter reviews different types of biomaterials for different tissue engineering applications.


Scaffolds Biopolymers Bioceramics Biomaterials for scaffolds 


  1. Anitha, A., Sowmya, S., Kumar, P. T., Deepthi, S., Chennazhi, K. P., Ehrlich, H., et al. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39, 1644–1667.Google Scholar
  2. Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., et al. (2009). Natural-synthetic polyblend nanofibers for biomedical applications. Advanced Materials, 21, 2792–2797.CrossRefGoogle Scholar
  3. Burkoth, A. K., Burdick, J., & Anseth, K. S. (2000). Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. Journal of Biomedical Materials Research, 51, 352–359.CrossRefGoogle Scholar
  4. Cooper, A., Bhattarai, N., & Zhang, M. (2011). Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 85, 149–156.CrossRefGoogle Scholar
  5. Finch, C. A., & Jobling, A. (1977). The physical properties of gelatin. In The science and technology of gelatin. London: Academic Press.Google Scholar
  6. Frazza, E., & Schmitt, E. (1971). A new absorbable suture. Journal of Biomedical Materials Research, 5, 43–58.CrossRefGoogle Scholar
  7. Hanes, J., Chiba, M., & Langer, R. (1998). Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials, 19, 163–172.CrossRefGoogle Scholar
  8. Hermawan, H. (2012). Biodegradable metals: From concept to applications. New York: Springer.Google Scholar
  9. Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydrate Polymers, 83, 940–946.CrossRefGoogle Scholar
  10. Ibim, S. M., Uhrich, K. E., Bronson, R., El-Amin, S. F., Langer, R. S., & Laurencin, C. T. (1998). Poly(anhydride-co-imides): In vivo biocompatibility in a rat model. Biomaterials, 19, 941–951.CrossRefGoogle Scholar
  11. Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C., & Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 46, 5094–5102.CrossRefGoogle Scholar
  12. Lanza, R., Langer, R., & Vacanti, J. (2007). Principles of tissue engineering. London: Academic Press.Google Scholar
  13. Liu, C., Xia, Z., & Czernuszka, J. (2007). Design and development of three-dimensional scaffolds for tissue engineering. Chemical Engineering Research and Design, 85, 1051–1064.CrossRefGoogle Scholar
  14. Lowry, K., Hamson, K., Bear, L., Peng, Y., Calaluce, R., Evans, M., et al. (1997). Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research, 36, 536–541.CrossRefGoogle Scholar
  15. Moghe, A., Hufenus, R., Hudson, S., & Gupta, B. (2009). Effect of the addition of a fugitive salt on electrospinnability of poly(ε-caprolactone). Polymer, 50, 3311–3318.CrossRefGoogle Scholar
  16. Mueller, P. P., May, T., Perz, A., Hauser, H., & Peuster, M. (2006). Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 27, 2193–2200.CrossRefGoogle Scholar
  17. Muggli, D. S., Burkoth, A. K., & Anseth, K. S. (1999). Crosslinked polyanhydrides for use in orthopedic applications: Degradation behavior and mechanics. Journal of Biomedical Materials Research, 46, 271–278.CrossRefGoogle Scholar
  18. Muzzarelli, R. A. (2011). Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs, 9, 1510–1533.CrossRefGoogle Scholar
  19. Patel, N. R., & Gohil, P. P. (2012). A Review on biomaterials: Scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2, 91–101.Google Scholar
  20. Peuster, M., Wohlsein, P., Brügmann, M., Ehlerding, M., Seidler, K., Fink, C., et al. (2001). A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—Results 6–18 months after implantation into New Zealand white rabbits. Heart, 86, 563–569.CrossRefGoogle Scholar
  21. Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., et al. (2008). Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering Part A, 14, 1787–1797.CrossRefGoogle Scholar
  22. Reed, A., & Gilding, D. (1981). Biodegradable polymers for use in surgery—poly (glycolic)/poly (Iactic acid) homo and copolymers: 2. In vitro degradation. Polymer, 22, 494–498.CrossRefGoogle Scholar
  23. Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413–3431.CrossRefGoogle Scholar
  24. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632.CrossRefGoogle Scholar
  25. Stephen-Haynes, J., Gibson, E., & Greenwood, M. (2014). Chitosan: A natural solution for wound healing. Journal of Community Nursing, 28, 48–53.Google Scholar
  26. Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: Surface modification and in vitro biological evaluation. Biofabrication, 4, 015003.CrossRefGoogle Scholar
  27. Swieszkowski, W., Jaegermann, Z., Hutmacher, D. W., & Kurzydlowski, K. J. (2010). Ceramic materials for bone tissue replacement and regeneration. In D. Jiang, Y. Zeng, M. Singh, & J. Heinrich (Eds.), Ceramic materials and components for energy and environmental applications (pp. 525–530). Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:  10.1002/9780470640845.ch74.
  28. Tiyaboonchai, W. (2013). Chitosan nanoparticles: A promising system for drug delivery. Naresuan University Journal, 11, 51–66.Google Scholar
  29. Vail, N., Swain, L., Fox, W., Aufdlemorte, T., Lee, G., & Barlow, J. (1999). Materials for biomedical applications. Materials and Design, 20, 123–132.CrossRefGoogle Scholar
  30. Van der Schueren, L., de Schoenmaker, B., Kalaoglu, Ö. I., & de Clerck, K. (2011). An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 47, 1256–1263.CrossRefGoogle Scholar
  31. Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., & Tio, F. O. (2008). Short-term effects of biocorrodible iron stents in porcine coronary arteries. Journal of Interventional Cardiology, 21, 15–20.CrossRefGoogle Scholar
  32. Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59, 325–338.CrossRefGoogle Scholar
  33. Witte, F., & Eliezer, A. (2012). Biodegradable metals. In Degradation of implant materials. New York: Springer.Google Scholar
  34. Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256.CrossRefGoogle Scholar
  35. Yang, X., Chen, X., & Wang, H. (2009). Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules, 10, 2772–2778.CrossRefGoogle Scholar
  36. Zhang, Y., Ouyang, H., Lim, C. T., Ramakrishna, S., & Huang, Z. M. (2005). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72, 156–165.CrossRefGoogle Scholar
  37. Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1–34.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Clinical Sciences, Faculty of Biosciences and Medical EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia

Personalised recommendations