Stellar Driven Evolution of Hydrogen-Dominated Atmospheres from Earth-Like to Super-Earth-Type Exoplanets

  • Kristina G. KislyakovaEmail author
  • Mats Holmström
  • Helmut Lammer
  • Nikolai V. Erkaev
Part of the Astrophysics and Space Science Library book series (ASSL, volume 411)


In the present chapter we discuss the impact of a host stars radiation and plasma environment to the escape and evolution of hydrogen-dominated exoplanet atmospheres . We focus mainly on planets within the Earth- to super-Earth mass domain and consider both, thermal and nonthermal atmospheric escape processes. The type of thermal loss mechanism depends on the so-called escape parameter, which is the ratio of the gravitational energy of a particle to its thermal energy. For low values of this parameter a planetary atmosphere switches from classical Jeans to modified Jeans escape and finally to hydrodynamic blow off. During blow off the majority of the atmospheric particles dispose of enough energy to escape the planet’s gravity field. This leads to extreme gas losses . It is shown that non-thermal losses for light species such as hydrogen never exceed blow off escape, but they are of significant importance for planets with relatively weak Jeans-type escape or heavier particles (e.g., O, C, N). From the diversity of non-thermal escape mechanisms, in the present chapter we focus on ion pick-up and discuss the importance of other loss mechanisms. The general conclusion of the chapter is, that escape processes strongly shape the evolution of exoplanet atmospheres and determine, if the planet loses its hydrogen and/or volatile-rich protoatmospheres or, on the contrary, remains as a mini-Neptune , which can probably not be considered as a potential habitat as we know it.


Stellar Wind Direct Simulation Monte Carlo Terrestrial Planet Roche Lobe Habitable Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support by the International Space Science Institute (ISSI) in Bern, Switzerland and the ISSI team Characterizing stellar- and exoplanetary environments. K. G. Kislyakova, and H. Lammer acknowledge support by the Austrian Research Foundation FWF NFN project S116 ‘Pathways to Habitability: From Disks to Active Stars, Planets and Life’, and the related FWF NFN subproject, ‘Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions.’


  1. Bourrier, V., & Lecavelier des Etangs, A. (2013). Astronomy and Astrophysics, 557, A124.Google Scholar
  2. Broeg, C. H. (2009). Icarus, 204, 15.ADSCrossRefGoogle Scholar
  3. Chandrasekhar, S. (1963). Astrophysical Journal, 138, 1182.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. Elkins-Tanton, L. T., & Seager, S. (2008). Astrophysical Journal, 685, 1237.ADSCrossRefGoogle Scholar
  5. Erkaev, N. V., Kulikov, Y. N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G. F., & Biernat, H. K. (2007). Astronomy and Astrophysics, 472, 329.ADSCrossRefGoogle Scholar
  6. Erkaev, N. V., Lammer, H., Odert, P., Kulikov, Y. N., Kislyakova, K. G., Khodachenko, M. L., Güdel, M., Hanslmeier, A., & Biernat, H. (2013). Astrobiology, 11, 1–19.Google Scholar
  7. Fossati, L., Haswell, C. A., Linsky, J. L., & Kislyakova, K. G. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 59). Heidelberg/New York: Springer.Google Scholar
  8. Fridlund, F., Rauer, H., & Erikson, A. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 253). Heidelberg/New York: Springer.Google Scholar
  9. Güdel, M. (2007). Living Reviews in Solar Physics, 4, 3.ADSCrossRefGoogle Scholar
  10. Holmström, M. Ekenbäck, A. Selsis, F. Penz, T. Lammer, H. & Wurz, P. (2008). Nature, 451, 970–972.ADSCrossRefGoogle Scholar
  11. Hunten, D. M., Pepin, R. O., & Walker, J. C. G. (1987). Icarus, 69, 532–549.ADSCrossRefGoogle Scholar
  12. Ikoma, M., & Genda, H. (2006). Astrophysical Journal, 648, 696.ADSCrossRefGoogle Scholar
  13. Izmodenov, V. V., Malama, Y. G., Kalinin, A. P., Gruntman, M. Lallement, R., & Rodionova, I. P. (2000). APSS, 274, 71–76.ADSGoogle Scholar
  14. Khodachenko, M. L., Ribas, I., Lammer, H., Grießmeier, J.-M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H. K., Farrugia, C. J., & Rucker, H. O. (2007). Astrobiology, 7, 167–184.ADSCrossRefGoogle Scholar
  15. Kislyakova, K. G., Lammer, H., Holmström, M., Panchenko, M., Odert, P., Erkaev, N. V., Leitzinger, M., Khodachenko, M. L., Kulikov, Y. N., Güdel, M., Hanslmeier, A. (2013). Astrobiology, 11, 1030–1048.ADSCrossRefGoogle Scholar
  16. Kislyakova, K. G., Johnstone, C. P., Odert, P., Erkaev, E. V., Lammer, H., Lüftinger, T., Holmström. M., Khodachenko, M. L., & Güdel, M. (2014). Astronomy and Astrophysics, 562, A116.Google Scholar
  17. Kulikov, Yu. N., Lammer, H., Lichtenegger, H. I. M., Terada, N., Ribas, E., Kolb, C., Langmayr, D., Lundin, R., Guinan, E. F., Barabash, S., & Biernat, H. B. (2006). PSS, 54, 1425.CrossRefGoogle Scholar
  18. Kulow, J. R., France, K., Linsky, J., & Parke Loyd, R. O. (2014), Astrophysical Journal, 786, 132 (9pp)Google Scholar
  19. Lammer, H., Bredehöft, J. H., Coustenis, A., Khodachenko, M. L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C. S., Kulikov, Y. N., Grenfell, J. L., & Rauer, H. (2009a). Astronomy and Astrophysics Review, 17, 181–249.ADSCrossRefGoogle Scholar
  20. Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M. L., Panchenko, M., Kulikov, Y. N., Zhang, T. L., Lichtenegger, H. I. M., Erkaev, N. V., Wuchterl, G., Micela, G., Penz, T., Biernat, H. K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., & Hanslmeier, A. (2009b). Astronomy and Astrophysics, 506, 399.ADSCrossRefGoogle Scholar
  21. Lammer, H., Kislyakova, K. G., Güdel, M., Holmström, M., Erkaev, N. V., Odert, P., & Khodachenko, M. L. (2013a). In J. M. Trigo-Rodriguez, F. Raulin, C. Muller & C. Nixon (Eds.), The early evolution of the atmospheres of terrestrial planets. Astrophysics and space science proceedings (p. 33). New York: Springer.Google Scholar
  22. Lammer, H., Erkaev, N. V., Odert, P., Kislyakova, K. G., Leitzinger, M., & Khodachenko, M. L., (2013b). Monthly Notices of the Royal Astronomical Society, 430, 1247–1256.ADSCrossRefGoogle Scholar
  23. Lammer, H., Erkaev, N. V., Odert, P., Kislyakova, K. G., Leitzinger, M., & Khodachenko, M. L. (2014). Monthly Notices of the Royal Astronomical Society, 439, 3225.ADSCrossRefGoogle Scholar
  24. Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C., & Hébrard, G. (2004). Astronomy and Astrophysics, 418, L1-L4.Google Scholar
  25. Lecavelier des Etangs, A., Pont, F., Vidal-Madjar, A., & Sing, D. (2008). Astronomy and Astrophysics, 481, L83.Google Scholar
  26. Lecavelier des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G. E., Désert, J.-M., Ferlet, R., Hébrard, G., Sing, D. K., Tchakoumegni, K.-O., & Udry, S. (2010). Astronomy and Astrophysics, 514, A72.Google Scholar
  27. Leitzinger, M., Odert, P., Kulikov, Y. N., Lammer, H., Wuchterl, G., Penz, T., Guarcello, M. G., Micela, G., Khodachenko, M. L. Weingrill, J. Hanslmeier, A. Biernat, H. K., & Schneider, J., (2011). PSS, 59, 1472.CrossRefGoogle Scholar
  28. Lichtenegger, H. I. M., Lammer, H., Grießmeier, J.-M., Kulikov, Y. N., von Paris, P., Hausleitner, W., Krauss, S., & Rauer, H. (2010). Icarus, 210, 1.ADSCrossRefGoogle Scholar
  29. Lindsay, B. G. & Stebbings, R. F. (2005). Journal of Geophysical Research, 110, 12213.CrossRefGoogle Scholar
  30. Linsky, J. L., & Güdel, M., (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 3). Heidelberg/New York: Springer.Google Scholar
  31. Lundin, R. (2011). SSR, 162, 309.ADSCrossRefGoogle Scholar
  32. Mordasini, C., Alibert, Y., Georgy, C., Dittkrist, K.-M., & Henning, T. (2012). Astronomy and Astrophysics, 545, A112.CrossRefGoogle Scholar
  33. Shematovich, V. I., Bisikalo, D. V., & Dmitry E. I. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 105). Heidelberg/New York: Springer.Google Scholar
  34. Tian, F., Kasting, J. F., Liu, H.-L., & Roble, R. G. (2008a). Journal of Geophysical Research, 113, 5008.CrossRefGoogle Scholar
  35. Tian, F., Solomon, S. C., Quian, L., & Lei, J. (2008b). Journal of Geophysical Research (Planets), 113, 7005.ADSCrossRefGoogle Scholar
  36. Terada, N., Machida, S., & Shinagawa, H. (2002). Journal of Geophysical Research (Space Physics), 107, 1471.Google Scholar
  37. Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2003). Nature, 422, 143.Google Scholar
  38. Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. (2005). Astrophysical Journal Letters, 628, L143.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kristina G. Kislyakova
    • 1
    Email author
  • Mats Holmström
    • 2
  • Helmut Lammer
    • 1
  • Nikolai V. Erkaev
    • 3
    • 4
  1. 1.Austrian Academy of Sciences, Space Research InstituteGrazAustria
  2. 2.Swedish Institute of Space PhysicsKirunaSweden
  3. 3.Institute for Computational ModellingKrasnoyarsk 36Russia
  4. 4.Russian Academy of Sciences, and Siberian Federal UniversityKrasnoyarskRussian Federation

Personalised recommendations